已知函數(shù)
(1)判斷函數(shù)上的單調;
(2)若上的值域是,求的值.

(1)運用定義法來證明函數(shù)單調性,作差,變形定號,下結論。
(2)

解析試題分析:解:(1)設    2

            6
,因此,函數(shù)是在上的單調增函數(shù)    .8
(2)上的值域是
又由(1)得上是單調增函數(shù), 3
           5
解得     
考點:函數(shù)單調性
點評:主要是考查了函數(shù)單調性以及函數(shù)奇偶性的運用,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
⑴ 求函數(shù)的單調區(qū)間;
⑵ 如果對于任意的總成立,求實數(shù)的取值范圍;
⑶ 設函數(shù),. 過點作函數(shù)圖像的所有切線,令各切點的橫坐標構成數(shù)列,求數(shù)列的所有項之和的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

是定義在的可導函數(shù),且不恒為0,記.若對定義域內的每一個,總有,則稱為“階負函數(shù) ”;若對定義域內的每一個,總有,則稱為“階不減函數(shù)”(為函數(shù)的導函數(shù)).
(1)若既是“1階負函數(shù)”,又是“1階不減函數(shù)”,求實數(shù)的取值范圍;
(2)對任給的“2階不減函數(shù)”,如果存在常數(shù),使得恒成立,試判斷是否為“2階負函數(shù)”?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)是奇函數(shù),并且函數(shù)的圖像經(jīng)過點(1,3).
(1)求實數(shù)的值;
(2)求函數(shù)的值域。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

進貨原價為80元的商品400個,按90元一個售出時,可全部賣出.已知這種商品每個漲價一元,其銷售數(shù)就減少20個,問售價應為多少時所獲得利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某租賃公司擁有汽車100輛,當每輛車的月租金為3000元時,可全部租出,當每輛車的月租金每增加50元時,未租出的車將會增加一輛,租出的車每輛每月需維護費150元,未租出的車每輛每月需要維護費50元.
(1)當每輛車的月租金定為3600元時,能租出多少輛車?
(2)當每輛車的月租金定為多少元時,租賃公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(Ⅰ)討論函數(shù)的單調性;
(Ⅱ)若對任意時,恒有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

定義在R上的函數(shù),當時,,且對任意實數(shù),
,
求證:;
(2)證明:是R上的增函數(shù);
(3)若,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

有一批貨物需要用汽車從生產(chǎn)商所在城市甲運至銷售商所在城市乙,已知從城市甲到城市乙只有兩條公路,且通過這兩條公路所用的時間互不影響。
據(jù)調查統(tǒng)計,通過這兩條公路從城市甲到城市乙的200輛汽車所用時間的頻數(shù)分布如下表:

所用的時間(天數(shù))
10
11
12
13
通過公路1的頻數(shù)
20
40
20
20
通過公路2的頻數(shù)
10
40
40
10
假設汽車A只能在約定日期(某月某日)的前11天出發(fā),汽車B只能在約定日期的前12天出發(fā)。
(1)為了盡最大可能在各自允許的時間內將貨物運往城市乙,估計汽車A和汽車B應如何選擇各自的路徑;
(2)若通過公路1、公路2的“一次性費用”分別為3.2萬元、1.6萬元(其它費用忽略不計),此項費用由生產(chǎn)商承擔。如果生產(chǎn)商恰能在約定日期當天將貨物送到,則銷售商一次性支付給生產(chǎn)商40萬元,若在約定日期前送到,每提前一天銷售商將多支付給生產(chǎn)商2萬元;若在約定日期后送到,每遲到一天銷售商將少支付給生產(chǎn)商2萬元。如果汽車A、B長期按(1)所選路徑運輸貨物,試比較哪輛汽車為生產(chǎn)商獲得的毛利潤更大。
(注:毛利潤=(銷售商支付給生產(chǎn)商的費用)—(一次性費用))

查看答案和解析>>

同步練習冊答案