一條方向向量為的直線與圓相切,則該直線的縱截距為(       )

  A.               B.           C.          D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的中心在坐標(biāo)原點(diǎn),一條準(zhǔn)線的方程為,過(guò)橢圓的左焦點(diǎn),且方向向量為的直線交橢圓于兩點(diǎn),的中點(diǎn)為

(1)求直線的斜率(用、表示);

(2)設(shè)直線的夾角為,當(dāng)時(shí),求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013江西修水一中(上)高二第二次段考試卷文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,一條經(jīng)過(guò)點(diǎn)且方向向量為的直線交橢圓兩點(diǎn),交軸于點(diǎn),且

(1)求直線的方程;

(2)求橢圓長(zhǎng)軸長(zhǎng)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年上海市長(zhǎng)寧區(qū)高三4月教學(xué)質(zhì)量檢測(cè)(二模)理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿(mǎn)分18分)本題共有3個(gè)小題,第1小題滿(mǎn)分4分,第2小題滿(mǎn)分6分,第3小題滿(mǎn)分8分其中①6分、②2分。

設(shè)拋物線的焦點(diǎn)為,過(guò)且垂直于軸的直線與拋物線交于兩點(diǎn),已知.

(1)求拋物線的方程;

(2)設(shè),過(guò)點(diǎn)作方向向量為的直線與拋物線相交于兩點(diǎn),求使為鈍角時(shí)實(shí)數(shù)的取值范圍;

(3)①對(duì)給定的定點(diǎn),過(guò)作直線與拋物線相交于兩點(diǎn),問(wèn)是否存在一條垂直于軸的直線與以線段為直徑的圓始終相切?若存在,請(qǐng)求出這條直線;若不存在,請(qǐng)說(shuō)明理由。

②對(duì),過(guò)作直線與拋物線相交于兩點(diǎn),問(wèn)是否存在一條垂直于軸的直線與以線段為直徑的圓始終相切?(只要求寫(xiě)出結(jié)論,不需用證明)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009年上海市普陀區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知等軸雙曲線C:x2-y2=a2(a>0)的右焦點(diǎn)為F,O為坐標(biāo)原點(diǎn). 過(guò)F作一條漸近線的垂線FP且垂足為P,
(1)求等軸雙曲線C的方程;
(2)假設(shè)過(guò)點(diǎn)F且方向向量為的直線l交雙曲線C于A、B兩點(diǎn),求的值;
(3)假設(shè)過(guò)點(diǎn)F的動(dòng)直線l與雙曲線C交于M、N兩點(diǎn),試問(wèn):在x軸上是否存在定點(diǎn)P,使得為常數(shù).若存在,求出點(diǎn)P的坐標(biāo);若不存在,試說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案