(本題滿分18分)本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分其中①6分、②2分。
設(shè)拋物線的焦點(diǎn)為,過且垂直于軸的直線與拋物線交于兩點(diǎn),已知.
(1)求拋物線的方程;
(2)設(shè),過點(diǎn)作方向向量為的直線與拋物線相交于兩點(diǎn),求使為鈍角時(shí)實(shí)數(shù)的取值范圍;
(3)①對(duì)給定的定點(diǎn),過作直線與拋物線相交于兩點(diǎn),問是否存在一條垂直于軸的直線與以線段為直徑的圓始終相切?若存在,請(qǐng)求出這條直線;若不存在,請(qǐng)說明理由。
②對(duì),過作直線與拋物線相交于兩點(diǎn),問是否存在一條垂直于軸的直線與以線段為直徑的圓始終相切?(只要求寫出結(jié)論,不需用證明)
(1)
(2)
(3)①不存在
②當(dāng)時(shí),存在直線滿足條件;
當(dāng)且時(shí),直線不存在。
【解析】設(shè)、列、解”三部曲是解答數(shù)學(xué)問題的基本方法,設(shè)的巧妙,列的合理,解的準(zhǔn)確快速,這是考試的基本要求,也是平時(shí)訓(xùn)練的最高追求所在.拋物線的考查仍為熱點(diǎn),平面向量的滲入仍然是大趨勢,把向量的表達(dá)式能熟練轉(zhuǎn)化為其坐標(biāo)表達(dá)式(特別是用其橫坐標(biāo)分量或是縱坐標(biāo)分量的表示)顯得非常重要;直線與拋物線的位置關(guān)系不會(huì)拋開二次方程的根與系數(shù)的關(guān)系,給定參數(shù)的范圍求某變量的取值范圍是高考數(shù)學(xué)在二次曲線板塊的特點(diǎn),應(yīng)值得注意。
解:(1)由條件得,拋物線C的方程為;…………………. 4分
(2)直線方程為代入得,
設(shè),則,
!. 6分
為鈍角,,即
,
,……………………………. 8分
因此,………………. 9分
綜上得!. 10分
(3)①設(shè)過所作直線方程為代入得
,…………………………….11 分
設(shè)則,
,中點(diǎn),…………………. 12分
!. 13分
設(shè)存在直線滿足條件,則, ……………………………. 14分
對(duì)任意恒成立,
無解,這樣的直線不存在。 …………………. 16分
②當(dāng)時(shí),存在直線滿足條件;………………………….17分
當(dāng)且時(shí),直線不存在。 …………………………….18分
【解析】
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)
在平面直角坐標(biāo)系中,已知為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,其中且.設(shè).
(1)若,,,求方程在區(qū)間內(nèi)的解集;
(2)若點(diǎn)是過點(diǎn)且法向量為的直線上的動(dòng)點(diǎn).當(dāng)時(shí),設(shè)函數(shù)的值域?yàn)榧?img width=21 height=17 src="http://thumb.zyjl.cn/pic1/1899/sx/18/333018.gif" >,不等式的解集為集合. 若恒成立,求實(shí)數(shù)的最大值;
(3)根據(jù)本題條件我們可以知道,函數(shù)的性質(zhì)取決于變量、和的值. 當(dāng)時(shí),試寫出一個(gè)條件,使得函數(shù)滿足“圖像關(guān)于點(diǎn)對(duì)稱,且在處取得最小值”.(說明:請(qǐng)寫出你的分析過程.本小題將根據(jù)你對(duì)問題探究的完整性和在研究過程中所體現(xiàn)的思維層次,給予不同的評(píng)分.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:上海市普陀區(qū)2010屆高三第二次模擬考試?yán)砜茢?shù)學(xué)試題 題型:解答題
(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)
在平面直角坐標(biāo)系中,已知為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,其中且.設(shè).
(1)若,,,求方程在區(qū)間內(nèi)的解集;
(2)若點(diǎn)是過點(diǎn)且法向量為的直線上的動(dòng)點(diǎn).當(dāng)時(shí),設(shè)函數(shù)的值域?yàn)榧?img src="http://thumb.zyjl.cn/pic5/tikupic/89/5/a05qa.gif" style="vertical-align:middle;" />,不等式的解集為集合. 若恒成立,求實(shí)數(shù)的最大值;
(3)根據(jù)本題條件我們可以知道,函數(shù)的性質(zhì)取決于變量、和的值. 當(dāng)時(shí),試寫出一個(gè)條件,使得函數(shù)滿足“圖像關(guān)于點(diǎn)對(duì)稱,且在處取得最小值”.(說明:請(qǐng)寫出你的分析過程.本小題將根據(jù)你對(duì)問題探究的完整性和在研究過程中所體現(xiàn)的思維層次,給予不同的評(píng)分.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市長寧區(qū)高三教學(xué)質(zhì)量測試?yán)砜茢?shù)學(xué) 題型:解答題
(本小題滿分18分) 本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.
(文)已知數(shù)列中,
(1)求證數(shù)列不是等比數(shù)列,并求該數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和;
(3)設(shè)數(shù)列的前項(xiàng)和為,若對(duì)任意恒成立,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市長寧區(qū)高三教學(xué)質(zhì)量測試?yán)砜茢?shù)學(xué) 題型:解答題
本小題滿分18分) 本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.
設(shè)函數(shù)是定義域?yàn)?i>R的奇函數(shù).
(1)求k值;
(2)(文)當(dāng)時(shí),試判斷函數(shù)單調(diào)性并求不等式f(x2+2x)+f(x-4)>0的解集;
(理)若f(1)<0,試判斷函數(shù)單調(diào)性并求使不等式恒成立的的取值范圍;
(3)若f(1)=,且g(x)=a 2x+a - 2x-2m f(x) 在[1,+∞)上的最小值為-2,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:上海市普陀區(qū)2010屆高三第二次模擬考試?yán)砜茢?shù)學(xué)試題 題型:解答題
(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)
在平面直角坐標(biāo)系中,已知為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,其中且.設(shè).
(1)若,,,求方程在區(qū)間內(nèi)的解集;
(2)若點(diǎn)是過點(diǎn)且法向量為的直線上的動(dòng)點(diǎn).當(dāng)時(shí),設(shè)函數(shù)的值域?yàn)榧?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052111495710937700/SYS201205211152429218217731_ST.files/image019.png">,不等式的解集為集合. 若恒成立,求實(shí)數(shù)的最大值;
(3)根據(jù)本題條件我們可以知道,函數(shù)的性質(zhì)取決于變量、和的值. 當(dāng)時(shí),試寫出一個(gè)條件,使得函數(shù)滿足“圖像關(guān)于點(diǎn)對(duì)稱,且在處取得最小值”.(說明:請(qǐng)寫出你的分析過程.本小題將根據(jù)你對(duì)問題探究的完整性和在研究過程中所體現(xiàn)的思維層次,給予不同的評(píng)分.)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com