(本題滿分18分)本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分其中①6分、②2分。
設(shè)拋物線的焦點為
,過
且垂直于
軸的直線與拋物線交于
兩點,已知
.
(1)求拋物線的方程;
(2)設(shè),過點
作方向向量為
的直線與拋物線
相交于
兩點,求使
為鈍角時實數(shù)
的取值范圍;
(3)①對給定的定點,過
作直線與拋物線
相交于
兩點,問是否存在一條垂直于
軸的直線與以線段
為直徑的圓始終相切?若存在,請求出這條直線;若不存在,請說明理由。
②對,過
作直線與拋物線
相交于
兩點,問是否存在一條垂直于
軸的直線與以線段
為直徑的圓始終相切?(只要求寫出結(jié)論,不需用證明)
(1)
(2)
(3)①不存在
②當(dāng)時,存在直線
滿足條件;
當(dāng)且
時,直線不存在。
【解析】設(shè)、列、解”三部曲是解答數(shù)學(xué)問題的基本方法,設(shè)的巧妙,列的合理,解的準(zhǔn)確快速,這是考試的基本要求,也是平時訓(xùn)練的最高追求所在.拋物線的考查仍為熱點,平面向量的滲入仍然是大趨勢,把向量的表達式能熟練轉(zhuǎn)化為其坐標(biāo)表達式(特別是用其橫坐標(biāo)分量或是縱坐標(biāo)分量的表示)顯得非常重要;直線與拋物線的位置關(guān)系不會拋開二次方程的根與系數(shù)的關(guān)系,給定參數(shù)的范圍求某變量的取值范圍是高考數(shù)學(xué)在二次曲線板塊的特點,應(yīng)值得注意。
解:(1)由條件得,
拋物線C的方程為
;…………………. 4分
(2)直線方程為代入
得
,
設(shè),則
,
�!�. 6分
為鈍角,
,即
,
,……………………………. 8分
因此,………………. 9分
綜上得�!�. 10分
(3)①設(shè)過所作直線方程為
代入
得
,…………………………….11 分
設(shè)則
,
,
中點
,…………………. 12分
�!�. 13分
設(shè)存在直線滿足條件,則
, ……………………………. 14分
對任意
恒成立,
無解,
這樣的直線不存在。 …………………. 16分
②當(dāng)時,存在直線
滿足條件;………………………….17分
當(dāng)且
時,直線不存在。 …………………………….18分
【解析】
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)
在平面直角坐標(biāo)系中,已知為坐標(biāo)原點,點
的坐標(biāo)為
,點
的坐標(biāo)為
,其中
且
.設(shè)
.
(1)若,
,
,求方程
在區(qū)間
內(nèi)的解集;
(2)若點是過點
且法向量為
的直線
上的動點.當(dāng)
時,設(shè)函數(shù)
的值域為集合
,不等式
的解集為集合
. 若
恒成立,求實數(shù)
的最大值;
(3)根據(jù)本題條件我們可以知道,函數(shù)的性質(zhì)取決于變量
、
和
的值. 當(dāng)
時,試寫出一個條件,使得函數(shù)
滿足“圖像關(guān)于點
對稱,且在
處
取得最小值”.(說明:請寫出你的分析過程.本小題將根據(jù)你對問題探究的完整性和在研究過程中所體現(xiàn)的思維層次,給予不同的評分.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:上海市普陀區(qū)2010屆高三第二次模擬考試?yán)砜茢?shù)學(xué)試題 題型:解答題
(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)
在平面直角坐標(biāo)系中,已知為坐標(biāo)原點,點
的坐標(biāo)為
,點
的坐標(biāo)為
,其中
且
.設(shè)
.
(1)若,
,
,求方程
在區(qū)間
內(nèi)的解集;
(2)若點是過點
且法向量為
的直線
上的動點.當(dāng)
時,設(shè)函數(shù)
的值域為集合
,不等式
的解集為集合
. 若
恒成立,求實數(shù)
的最大值;
(3)根據(jù)本題條件我們可以知道,函數(shù)的性質(zhì)取決于變量
、
和
的值. 當(dāng)
時,試寫出一個條件,使得函數(shù)
滿足“圖像關(guān)于點
對稱,且在
處
取得最小值”.(說明:請寫出你的分析過程.本小題將根據(jù)你對問題探究的完整性和在研究過程中所體現(xiàn)的思維層次,給予不同的評分.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市長寧區(qū)高三教學(xué)質(zhì)量測試?yán)砜茢?shù)學(xué) 題型:解答題
(本小題滿分18分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.
(文)已知數(shù)列中,
(1)求證數(shù)列不是等比數(shù)列,并求該數(shù)列的通項公式;
(2)求數(shù)列的前
項和
;
(3)設(shè)數(shù)列的前
項和為
,若
對任意
恒成立,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市長寧區(qū)高三教學(xué)質(zhì)量測試?yán)砜茢?shù)學(xué) 題型:解答題
本小題滿分18分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.
設(shè)函數(shù)是定義域為R的奇函數(shù).
(1)求k值;
(2)(文)當(dāng)時,試判斷函數(shù)單調(diào)性并求不等式f(x2+2x)+f(x-4)>0的解集;
(理)若f(1)<0,試判斷函數(shù)單調(diào)性并求使不等式恒成立的
的取值范圍;
(3)若f(1)=,且g(x)=a 2x+a - 2x-2m f(x) 在[1,+∞)上的最小值為-2,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:上海市普陀區(qū)2010屆高三第二次模擬考試?yán)砜茢?shù)學(xué)試題 題型:解答題
(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)
在平面直角坐標(biāo)系中,已知為坐標(biāo)原點,點
的坐標(biāo)為
,點
的坐標(biāo)為
,其中
且
.設(shè)
.
(1)若,
,
,求方程
在區(qū)間
內(nèi)的解集;
(2)若點是過點
且法向量為
的直線
上的動點.當(dāng)
時,設(shè)函數(shù)
的值域為集合
,不等式
的解集為集合
. 若
恒成立,求實數(shù)
的最大值;
(3)根據(jù)本題條件我們可以知道,函數(shù)的性質(zhì)取決于變量
、
和
的值. 當(dāng)
時,試寫出一個條件,使得函數(shù)
滿足“圖像關(guān)于點
對稱,且在
處
取得最小值”.(說明:請寫出你的分析過程.本小題將根據(jù)你對問題探究的完整性和在研究過程中所體現(xiàn)的思維層次,給予不同的評分.)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com