已知函數(shù)f(x)=ax3+
b
x2-a2x(a>0),存在實數(shù)x1,x2滿足下列條件:①x1<x2;②f′(x1)=f′(x2)=0;③|x1|+|x2|=2.
(1)證明:0<a≤3;
(2)求b的取值范圍.
考點:二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由題意可得f′(x)=3ax2+2
b
x-a2,再根據(jù)方程f′(x)=0有解,利用判別式大于或等于零,求得a的范圍.
(2)由 b=3a2(3-a)=-3a3+9a2,可得 b′=-9a2+18a,令b′=0,求得 a=0,或a=2.再根據(jù)在(0,2]上,b′>0,函數(shù)b是增函數(shù),求得b的范圍.
解答: 解:(1)∵函數(shù)f(x)=ax3+
b
x2-a2x,∴f′(x)=3ax2+2
b
x-a2,
∵滿足①x1<x2;②f′(x1)=f′(x2)=0,
x1+x2=-
2
b
3a
,x1x2=-
a
3
,由a>0,得x1<0<x2

∵|x1|+|x2|=2,∴x2-x1=2.
x1x2是方程t2-2t+
a
3
=0
的兩個實根,∵方程有解,
△=4-
4a
3
≥0,得0<a≤3
,即a的范圍為(0,3].
(2)由 b=3a2(3-a)=-3a3+9a2,
∴b′=-9a2+18a,令b′=0,求得 a=0,或 a=2,
0<a≤2時,b′≥0,b在(0,2]上單調(diào)遞增;故有 0≤b≤12.
點評:本題主要考查二次函數(shù)的性質(zhì),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

化簡求值:
cos(π+α)sin(α-2π)
sin(-α-π)cos(π-α)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以直角坐標(biāo)系xOy的原點為極點,x軸的正半軸為極軸,且兩坐標(biāo)系取相同的長度單位.已知點N的極坐標(biāo)為(2,
π
2
),m是曲線C:ρ2cos2θ+1=0上任意一點,點P滿足
OP
=
OM
+
ON
,設(shè)點P的軌跡為曲線Q
(1)求曲線Q的直角坐標(biāo)方程;
(2)若直線l:
x=-2-t
y=2-
3
t
(t為參數(shù))
與曲線Q的交點為A、B,求|AB|的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正方體ABCD-A1B1C1D1中.
(1)證明:AC∥平面A1BC1;
(2)在正方體中,求DC1與B1C直線所組成的角的大。
(3)在正方體ABCD-A1B1C1D1中,求證BC1∥平面AD1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知甲、乙兩名籃球運動員每場比賽得分的原始記錄用如圖莖葉圖表示:
(1)按從小到大的順序?qū)懗黾走\動員的得分;
(2)求甲、乙運動員得分的中位數(shù);
(3)估計乙運動員在一場比賽中得分落在[10,40]內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a<0時,f(x)=sinx-
2
aex在(0,+∞)有且僅有一個零點,則a的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x-2
+
3-x
的定義域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα=
3
5
,α∈(
π
2
,π),則sin2α等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的不等式|a|<|x|+|x+1|解集為R,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案