18.在正四棱錐P-ABCD中,PA=2,直線PA與平面ABCD所成角為60°,E為PC的中點,則異面直線PA與BE所成角的大小為45°.

分析 連接AC,BD交于點O,連接OE,OP,先證明∠PAO即為PA與面ABCD所成的角,即可得出結論.

解答 解:連接AC,BD交于點O,連接OE,OP
因為E為PC中點,所以OE∥PA,
所以∠OEB即為異面直線PA與BE所成的角.
因為四棱錐P-ABCD為正四棱錐,
所以PO⊥平面ABCD,
所以AO為PA在面ABCD內的射影,所以∠PAO即為PA與面ABCD所成的角,即∠PAO=60°,
因為PA=2,所以OA=OB=1,OE=1.
△PBC中,PB=PC=2,BC=$\sqrt{2}$,∴2(4+2)=4+4BE2,∴BE=$\sqrt{2}$,
∴OE2+OB2=BE2,
所以在直角三角形EOB中∠OEB=45°,即面直線PA與BE所成的角為45°.
故答案為為45°.

點評 本題考查異面直線所成角,考查線面垂直,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

8.求適合下列條件的雙曲線的標準方程
(Ⅰ)過點(3,-1),且離心率$e=\sqrt{2}$;
(Ⅱ)一條漸近線為$y=-\frac{3}{2}x$,頂點間距離為6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知函數(shù)f(x)=ax2-4ax-lnx,則f(x)在(1,3)上不單調的一個充分不必要條件是(  )
A.a∈(-∞,$\frac{1}{6}$)B.a∈(-$\frac{1}{2}$,+∞)C.a∈(-$\frac{1}{2}$,$\frac{1}{6}$)D.a∈($\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知直線l1:x+my+6=0與l2:(m-2)x+3my+2m=0.
(1)當m為何值時,l1與l2平行;
(2)當m為何值時,l1與l2垂直.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知函數(shù)f(x)是定義在R上的奇函數(shù),且x≤0時f(x)=3x-2x+m(m∈R,m為常數(shù)),則f(2)=$-\frac{28}{9}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=x2-(a-2)x-alnx(a∈R).
(Ⅰ)求函數(shù)y=f(x)的單調區(qū)間;
(Ⅱ)當a=1時,證明:對任意的x>0,f(x)+ex>x2+x+2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.設曲線y=$\frac{x+1}{x-1}$在點(2,3)處的切線與直線ax+y+1=0平行,則a=( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-2D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.補全函數(shù)y=$\left\{\begin{array}{l}{\frac{π}{2}x-5,(x>0)}\\{0,(x=0)}\\{\frac{π}{2}x+3,(x<0)}\end{array}\right.$,的流程圖.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖所示,l1,l2是互相垂直的異面直線,MN是它們的公垂線段,點A,B在直線l1上,且位于M點的兩側,C在l2上,AM=BM=NM=CN
(1)求證:異面直線AC與BN垂直;
(2)若四面體ABCN的體積VABCN=9,求異面直線l1,l2之間的距離.

查看答案和解析>>

同步練習冊答案