9.已知函數(shù)f(x)=ax2-4ax-lnx,則f(x)在(1,3)上不單調(diào)的一個充分不必要條件是( 。
A.a∈(-∞,$\frac{1}{6}$)B.a∈(-$\frac{1}{2}$,+∞)C.a∈(-$\frac{1}{2}$,$\frac{1}{6}$)D.a∈($\frac{1}{2}$,+∞)

分析 求出函數(shù)的導(dǎo)數(shù),問題轉(zhuǎn)化為函數(shù)f(x)=ax2-4ax-lnx與x軸在(1,3)有交點,通過討論a的范圍,結(jié)合二次函數(shù)的性質(zhì)判斷即可.

解答 解:f′(x)=2ax-4a-$\frac{1}{x}$=$\frac{2{ax}^{2}-4ax-1}{x}$,
若f(x)在(1,3)上不單調(diào),
令g(x)=2ax2-4ax-1,
則函數(shù)g(x)=2ax2-4ax-l與x軸在(1,3)有交點,
a=0時,顯然不成立,
a≠0時,只需$\left\{\begin{array}{l}{△=1{6a}^{2}+8a≥0}\\{g(1)g(3)<0}\end{array}\right.$,
解得:a>$\frac{1}{2}$,
故選:D.

點評 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用以及二次函數(shù)的性質(zhì),是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)函數(shù)f(x)=$\frac{{3{x^2}+mx}}{e^x}$(m∈R).
(1)若f(x)在x=0處取得極值,求實數(shù)m的值,并確定f(0)是極大值還是極小值;
(2)若f(x)在[3,+∞)上單調(diào)遞減,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)$y=\frac{{\sqrt{1-x}}}{{\sqrt{x}}}$的定義域為( 。
A.(0,+∞)B.(0,1]C.(-∞,0)∪[1,+∞)D.(-∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)數(shù)列{an}前n項和為Sn,已知Sn=2an-1(n∈N*),
(1)求數(shù)列{an}的通項公式;
(2)若對任意的n∈N*,不等式k(Sn+1)≥2n-9恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)集合A={x|x2-4x+3≤0},集合B=$\left\{{x\left|{\frac{x-2}{x+1}>0}\right.}\right\}$,則A∪∁RB=( 。
A.[-1,3]B.[1,2]C.(-1,3]D.(-∞,-1)∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=x2+bx為定義在區(qū)間[-2a,3a-1]上的偶函數(shù),則a+b=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若f(x)=$\left\{{\begin{array}{l}x&{x∈[-1,0]}\\{\sqrt{1-{x^2}}}&{x∈(0,1]}\end{array}}$,則$\int_{-1}^1{f(x){d_x}}$=$\frac{1}{4}π$-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在正四棱錐P-ABCD中,PA=2,直線PA與平面ABCD所成角為60°,E為PC的中點,則異面直線PA與BE所成角的大小為45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{x+y-2≥0}\\{y≥0}\\{kx+y-3k≤0}\end{array}\right.$且目標(biāo)函數(shù)z=y-x的最大值是4,則k等于$\frac{3}{4}$.

查看答案和解析>>

同步練習(xí)冊答案