A. | a∈(-∞,$\frac{1}{6}$) | B. | a∈(-$\frac{1}{2}$,+∞) | C. | a∈(-$\frac{1}{2}$,$\frac{1}{6}$) | D. | a∈($\frac{1}{2}$,+∞) |
分析 求出函數(shù)的導(dǎo)數(shù),問題轉(zhuǎn)化為函數(shù)f(x)=ax2-4ax-lnx與x軸在(1,3)有交點,通過討論a的范圍,結(jié)合二次函數(shù)的性質(zhì)判斷即可.
解答 解:f′(x)=2ax-4a-$\frac{1}{x}$=$\frac{2{ax}^{2}-4ax-1}{x}$,
若f(x)在(1,3)上不單調(diào),
令g(x)=2ax2-4ax-1,
則函數(shù)g(x)=2ax2-4ax-l與x軸在(1,3)有交點,
a=0時,顯然不成立,
a≠0時,只需$\left\{\begin{array}{l}{△=1{6a}^{2}+8a≥0}\\{g(1)g(3)<0}\end{array}\right.$,
解得:a>$\frac{1}{2}$,
故選:D.
點評 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用以及二次函數(shù)的性質(zhì),是一道中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,+∞) | B. | (0,1] | C. | (-∞,0)∪[1,+∞) | D. | (-∞,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,3] | B. | [1,2] | C. | (-1,3] | D. | (-∞,-1)∪[1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com