在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,已知B=60°,cos(B+C)=-
11
14

(Ⅰ)求cosC的值;
(Ⅱ)若a=5,求△ABC的面積.
(本小題滿分12分)
(Ⅰ)在△ABC中,由cos(B+C)=-
11
14
,
得sin(B+C)=
1-cos2(B+C)
=
1-(-
11
14
)
2
=
5
3
14

又B=60°,
∴cosC=cos[(B+C)-B]
=cos(B+C)cosB+sin(B+C)sinB
=-
11
14
×
1
2
+
5
3
14
×
3
2
=
1
7
;…(6分)
(Ⅱ)∵cosC=
1
7
,C為三角形的內(nèi)角,sin(B+C)=
5
3
14
,
∴sinC=
1-cos2C
=
1-(
1
7
)
2
=
4
3
7
,sinA=sin(B+C)=
5
3
14

在△ABC中,由正弦定理
a
sinA
=
c
sinC
得:
5
5
3
14
=
c
4
3
7

∴c=8,又a=5,sinB=
3
2
,
則△ABC的面積為S=
1
2
acsinB=
1
2
×5×8×
3
2
=10
3
.…(12分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,則下列關(guān)系一定不成立的是( 。
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且bsinA=
3
acosB

(1)求角B的大。
(2)若a=4,c=3,D為BC的中點(diǎn),求△ABC的面積及AD的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c并且滿足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對(duì)邊的長(zhǎng)分別為a,b,c,且a=
5
,b=3,sinC=2sinA
,則sinA=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案