已知雙曲線
x2
4
+
y2
m
=1
的離心率為
3
,則雙曲線的右焦點(diǎn)是
(2
3
,0)
(2
3
,0)
分析:將雙曲線化成標(biāo)準(zhǔn)方程,算出a、b、c,從而得到離心率e關(guān)于m的表達(dá)式,結(jié)合題意解出m=-8,即可算出雙曲線的右焦點(diǎn)坐標(biāo).
解答:解:∵雙曲線
x2
4
+
y2
m
=1
x2
4
-
y2
-m
=1
,可得a=2,b=
-m
,
∴c=
a2+b2
=
4-m

由此可得離心率e=
c
a
=
4-m
2
=
3
,解之得m=-8.
∴c=
4-m
=
12
=2
3
,可得雙曲線的右焦點(diǎn)是F(2
3
,0).
故答案為:(2
3
,0)
點(diǎn)評(píng):本題給出含有參數(shù)m的雙曲線的離心率,求它的右焦點(diǎn)坐標(biāo).著重考查了雙曲線的標(biāo)準(zhǔn)方程與簡(jiǎn)單幾何性質(zhì)等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)結(jié)論:
①當(dāng)a為任意實(shí)數(shù)時(shí),直線(a-1)x-y+2a+1=0恒過(guò)定點(diǎn)P,則過(guò)點(diǎn)P且焦點(diǎn)在y軸上的拋物線的標(biāo)準(zhǔn)方程是x2=
4
3
y
;
②已知雙曲線的右焦點(diǎn)為(5,0),一條漸近線方程為2x-y=0,則雙曲線的標(biāo)準(zhǔn)方程是
x2
5
-
y2
20
=1
;
③拋物線y=ax2(a≠0)的準(zhǔn)線方程為y=-
1
4a
;
④已知雙曲線
x2
4
+
y2
m
=1
,其離心率e∈(1,2),則m的取值范圍是(-12,0).
其中所有正確結(jié)論的個(gè)數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
4
-
y2
a
=1
的實(shí)軸為A1A2,虛軸為B1B2,將坐標(biāo)系的右半平面沿y軸折起,使雙曲線的右焦點(diǎn)F2折至點(diǎn)F,若點(diǎn)F在平面A1B1B2內(nèi)的射影恰好是該雙曲線的左頂點(diǎn)A1,且直線B1F與平面A1B1B2所成角的正切值為
5
5
,則a=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•佛山一模)已知雙曲線
x2
4
-y2=1
,則其漸近線方程為
y=±
1
2
x
y=±
1
2
x
,離心率為
5
2
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•焦作一模)已知雙曲線
x2
4
-
y2
12
=1
的離心率為e,焦點(diǎn)為F的拋物線y2=2px與直線y=k(x-
p
2
)交于A、B兩點(diǎn),且
|AF|
|FB|
=e,則k的值為
+
.
2
2
+
.
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)結(jié)論:
①若α、β為銳角,tan(α+β)=-3,tanβ=
1
2
,則α+2β=
4
;
②在△ABC中,若
AB
BC
>0
,則△ABC一定是鈍角三角形;
③已知雙曲線
x2
4
+
y2
m
=1
,其離心率e∈(1,2),則m的取值范圍是(-12,0);
④當(dāng)a為任意實(shí)數(shù)時(shí),直線(a-1)x-y+2a+1=0恒過(guò)定點(diǎn)P,則焦點(diǎn)在y軸上且過(guò)點(diǎn)P的拋物線的標(biāo)準(zhǔn)方程是x2=
4
3
y
.其中所有正確結(jié)論的個(gè)數(shù)是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案