已知函數(shù)f(x)是定義域為R的周期為3的奇函數(shù),且當x∈(0,1.5)時f(x)=ln(x2-x+1),則方程f(x)=0在區(qū)間[0,6]上的解的個數(shù)是( )
A.3
B.5
C.7
D.9
【答案】分析:要求方程f(x)=0在區(qū)間[0,6]上的解的個數(shù),根據(jù)函數(shù)f(x)是定義域為R的周期為3的奇函數(shù),且當x∈(0,1.5)時f(x)=ln(x2-x+1),我們不難得到一個周期函數(shù)零點的個數(shù),根據(jù)周期性進行分析不難得到結(jié)論.
解答:解:∵當x∈(0,1.5)時f(x)=ln(x2-x+1),
令f(x)=0,則x2-x+1=1,解得x=1
又∵函數(shù)f(x)是定義域為R的奇函數(shù),
∴在區(qū)間∈[-1.5,1.5]上,
f(-1)=f(1)=0,
f(0)=0
f(1.5)=f(-1.5+3)=f(-1.5)=-f(-1.5)
∴f(-1)=f(1)=f(0)=f(1.5)=f(-1.5)=0
又∵函數(shù)f(x)是周期為3的周期函數(shù)
則方程f(x)=0在區(qū)間[0,6]上的解有0,1,1.5,2,3,4,4.5,5,6
共9個
故選D
點評:若奇函數(shù)經(jīng)過原點,則必有f(0)=0,這個關(guān)系式大大簡化了解題過程,要注意在解題中使用.如果本題所給區(qū)間為開區(qū)間,則答案為7個,若區(qū)間為半開半閉區(qū)間,則答案為8個,故要注意對端點的分析.