點M ( x 0y 0 )是圓 x 2 + y 2 = r 2內(nèi)圓心以外的一點,則直線x 0 x + y 0 y = r 2與該圓的位置關系是(    )

(A)相切          (B)相交         (C)相離          (D)相切或相交
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知點A(x1,y1)在圓(x-2)2+y2=4上運動,點A不與(0,0)重合,點B(4,y0)在直線x=4上運動,動點M(x,y)滿足
OM
OB
,
OM
=
AB
.動點M的軌跡C的方程為F(x,y)=0.
(1)試用點M的坐標x,y表示y0,x1,y1;
(2)求動點M的軌跡方程F(x,y)=0;
(3)以下給出曲線C的五個方面的性質(zhì),請你選擇其中的三個方面進行研究,并說明理由.(若你研究的方面多于三個,我們將只對試卷解答中的前三項予以評分)
①對稱性;
②頂點坐標(定義:曲線與其對稱軸的交點稱為該曲線的頂點);
③圖形范圍;
④漸近線;
⑤對方程F(x,y)=0,當y≥0時,函數(shù)y=f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知第一象限內(nèi)的點M到x軸、y軸的距離分別為5、4,點N的坐標是(0,3),經(jīng)過點M、N的圓P的圓心P在x軸上.
(1)求圓P的方程   
(2)若點Q(x,y)在圓P上,求:3x+4y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,長為6的線段PQ的端點分別在射線y=0(x≤0)和x=0(y≤0)上滑動,點M在線段PQ上,且
MQ
=2
PM

(1)求點M的軌跡方程;
(2)若點M的軌跡與x軸、y軸分別交于點A,B,求四邊形OAMB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P是橢圓
x2
36
+
y2
24
=1(x≠0,y≠0)
上的動點,F(xiàn)1,F(xiàn)2為橢圓的兩個焦點,O是坐標原點,若M是∠F1PF2的角平分線上一點,且
F1M
MP
=0
,則|OM|的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

動點M(x,y)到定點F(-1,0)的距離與到y(tǒng)軸的距離之差為1.
(I)求動點M的軌跡C的方程;
(II)過點Q(-3,0)的直線l與曲線C交于A、B兩點,問直線x=3上是否存在點P,使得△PAB是等邊三角形?若存在,求出所有的點P;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案