(本小題滿分14分)

設(shè)直線. 若直線l與曲線S同時(shí)滿足下列兩個(gè)條件:①直線l與曲線S相切且至少有兩個(gè)切點(diǎn);②對(duì)任意xR,都有. 則稱直線l為曲線S的“上夾線”.

(Ⅰ)已知函數(shù).求證:為曲線的“上夾線”.

(Ⅱ)觀察下圖:

根據(jù)上圖,試推測曲線的“上夾線”的方程,并給出證明.

 

【答案】

解:(Ⅰ)由, ……………………………1分

當(dāng)時(shí),

此時(shí),, ………………2分

,所以是直線與曲線的一個(gè)切點(diǎn); …………………3分

當(dāng)時(shí),,此時(shí),,…4分

,所以是直線與曲線的一個(gè)切點(diǎn); ……………5分

所以直線l與曲線S相切且至少有兩個(gè)切點(diǎn);

對(duì)任意xR,,

所以, ……………………………………………………………………6分

因此直線是曲線的“上夾線”.……………………7分

(Ⅱ)推測:的“上夾線”的方程為,……………9分

①先檢驗(yàn)直線與曲線相切,且至少有兩個(gè)切點(diǎn):

設(shè):,

,得:kZ),…………………………10分

當(dāng)時(shí),,

故過曲線上的點(diǎn)(,m()+n)的切線方程為:

y-[ m()+n]=m[x-()]化簡得:

即直線與曲線相切且有無數(shù)個(gè)切點(diǎn).…………………12分

不妨設(shè),②下面檢驗(yàn)g(x) ≥ F(x),g(x)-F(x)=,

直線是曲線的“上夾線”.………………………………14分

 

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達(dá)式,并求f(x)的最小正周期;
(II)當(dāng)x∈[0,
π
2
]  時(shí),求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)AB是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對(duì)一應(yīng)季商品過去20天的銷售價(jià)格及銷售量進(jìn)行了監(jiān)測統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷售價(jià)格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.

⑴ 求滿足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習(xí)冊(cè)答案