函數(shù)y=sinα+cosα的圖象的一個(gè)對(duì)稱中心是( 。
A、(
π
4
,
2
B、(
4
,-
2
C、(-
π
4
,0)
D、(
π
2
,1)
考點(diǎn):正弦函數(shù)的圖象,兩角和與差的正弦函數(shù)
專題:三角函數(shù)的圖像與性質(zhì)
分析:利用輔助角公式將函數(shù)進(jìn)行化簡,根據(jù)對(duì)稱中心的性質(zhì)即可得到結(jié)論.
解答: 解:y=sinα+cosα=
2
sin(α+
π
4
)

由α+
π
4
=kπ,得α=kπ-
π
4
,
當(dāng)k=0時(shí),α=-
π
4

故(-
π
4
,0)是函數(shù)的一個(gè)對(duì)稱中心,
故選:C
點(diǎn)評(píng):本題主要考查三角函數(shù)的對(duì)稱中心的求解,根據(jù)三角函數(shù)的圖象和性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)求證:3(1+a2+a4)≥(1+a+a22
(2)已知:a2+b2=1,m2+n2=2,證明:-
2
≤am+bn≤
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
4
-
y2
5
=1右焦點(diǎn)為F2,點(diǎn)A(3,2),P為其右支上動(dòng)點(diǎn),則|PF2|+|PA|的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=b•ax(其中a,b為常量,且a>0,a≠1)的圖象經(jīng)過點(diǎn)A(1,6),B(3,24).
(1)試確定f(x)的解析式;
(2)若不等式(
1
a
x+(
1
b
x≥m在x∈(-∞,1]時(shí)恒成立,求實(shí)數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
1
2
cos2x+
3
2
sinxcosx+1,x∈R.
(1)求它的振幅、周期和初相;
(2)用五點(diǎn)法作出它的簡圖;
(3)該函數(shù)的圖象是由y=sinx(x∈R)的圖象經(jīng)過怎樣的平移和伸縮變換得到的?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)an=(n+1)2,bn=n2-n(n∈N*),則下列命題中不正確的是( 。
A、{an+1-an}是等差數(shù)列
B、{bn+1-bn}是等差數(shù)列
C、{an-bn}是等差數(shù)列
D、{an+bn}是等差數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=ex+ax有大于零的極值點(diǎn),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:-x2+8x+20≥0,q:x2-2x+1-m2≤0(m>0).若“非p”是“非q”的充分不必要條件,則實(shí)數(shù)m的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)定義在(0,+∞)上,其圖象經(jīng)過點(diǎn)M(1,0),導(dǎo)函數(shù)f′(x)=x-1,g(x)=f(x)+f′(x).
(1)如果不等式m≥g(x)有解,求實(shí)數(shù)m的取值范圍;
(2)如果N(t,b)是函數(shù)y=f′(x)圖象上一點(diǎn),證明:當(dāng)0<t<1,g(t)>g(b);
(3)是否存在x0>1,使得lnx<g(x0)<lnx+
2
x
對(duì)任意x>0恒成立?若存在,求出x0 的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案