已知函數(shù)f(x)是一次函數(shù),且f[f(x)]=4x-1,求函數(shù)f(x)的解析式.
分析:設(shè)f(x)=ax+b,a≠0,代入已知式子,比較系數(shù)可得a、b的方程組,解之可得解析式.
解答:解:由題意設(shè)f(x)=ax+b,a≠0
∵f[f(x)]=f(ax+b)=a(ax+b)+b=a2x+ab+b
又f[f(x)]=4x-1,
∴a2x+ab+b=4x-1
比較系數(shù)可得
a2=4
ab+b=-1

解得
a=2
b=-
1
3
a=-2
b=1

f(x)=2x-
1
3
,或f(x)=-2x+1
點(diǎn)評(píng):本題考查函數(shù)解析式的求解,涉及待定系數(shù)法,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•惠州一模)已知函數(shù)f(x)是(-∞,+∞)上的偶函數(shù),若對(duì)于x≥0都有f(x+2)=f(x),且當(dāng)x∈[0,2)時(shí),f(x)=log2(x+1),則f(-2011)+f(2012)=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•牡丹江一模)已知函數(shù)f(x)是定義在(-∞,+∞)上的奇函數(shù),若對(duì)于任意的實(shí)數(shù)x≥0,都有f(x+2)=f(x),且當(dāng)x∈[0,2)時(shí),f(x)=log2(x+1),則f(-2011)+f(2012)的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•蘭州一模)已知函數(shù)f(x)是R上的偶函數(shù),且滿足f(5+x)=f(5-x),在[0,5]上有且只有f(1)=0,則f(x)在[-2013,2013]上的零點(diǎn)個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•崇文區(qū)一模)已知函數(shù)f(x)是R上的減函數(shù),A(0,-2)、B(-3,2)是其圖象上的兩點(diǎn),則y=|f(x-2)|-2(y>0)的圖象可能是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•黑龍江一模)已知函數(shù)f(x)是定義在R上的奇函數(shù),其最小正周期為3,且x∈(-
3
2
,0)
時(shí),f(x)=log
1
2
(1-x)
,則f(2010)+f(2011)=(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案