9.已知復(fù)數(shù)z滿足(1+i)•z=2-i(i為虛數(shù)單位),則復(fù)數(shù)z為( 。
A.$\frac{1}{2}$+$\frac{3}{2}$iB.$\frac{1}{2}$-$\frac{3}{2}$iC.1+3iD.1-3i

分析 把已知等式變形,然后利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡得答案.

解答 解:由(1+i)•z=2-i,得
z=$\frac{2-i}{1+i}=\frac{(2-i)(1-i)}{(1+i)(1-i)}=\frac{1-3i}{2}=\frac{1}{2}-\frac{3}{2}i$,
故選:B.

點評 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.為了解某服裝廠某種服裝的年產(chǎn)量x(單位:千件)對價格y(單位:千元/千件)的影響,對近五年該產(chǎn)品的年產(chǎn)量和價格統(tǒng)計情況如下表:
 x 1 2 3 4 5
 y y1 y2 y3 y4 y5
如果y關(guān)于x的線性回歸方程為$\widehat{y}$=-12.3x+86.9,且y1=70,y2=65則y3+y4+y5=( 。
A.50B.113C.115D.238

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知$tan(α+\frac{π}{4})=\frac{1}{2}$,且$\frac{π}{2}<α<π$,則$\frac{{sin2α-2{{cos}^2}α}}{{sin(α-\frac{π}{4})}}$則等于( 。
A.$\frac{{2\sqrt{5}}}{5}$B.$\frac{{3\sqrt{5}}}{10}$C.$-\frac{{6\sqrt{5}}}{5}$D.$-\frac{{3\sqrt{5}}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知平面α⊥平面β,α∩β=b,a?α,則“a⊥b”是“a⊥β”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.記復(fù)數(shù)z的共軛復(fù)數(shù)為$\overline{z}$,若($\overline{z}$+i)(1+i)=2,則復(fù)數(shù)z所對應(yīng)的點Z位于復(fù)平面的( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知定義在(0,+∞)上的函數(shù)f(x)滿足f(x)=x•[f′(x)+1],且f(1)=1,則f(x)的最大值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知 f(x)=2lnx-ax+1(a∈R).
(Ⅰ)若a>0,求f(x)的單調(diào)區(qū)間;
(Ⅱ)若 f(x)有兩個不同零點 x1、x2 (x2>x1),f'(x)為 f(x)的導(dǎo)函數(shù),求證:f'($\frac{{{x_1}+2{x_2}}}{2}$)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某地區(qū)以“綠色出行”為宗旨開展“共享單車”業(yè)務(wù).該地區(qū)某高級中學(xué)一興趣小組由9名高二級學(xué)生和6名高一級學(xué)生組成,現(xiàn)采用分層抽樣的方法抽取5人,組成一個體驗小組去市場體驗“共享單車”的使用.問:
(Ⅰ)應(yīng)從該興趣小組中抽取高一級和高二級的學(xué)生各多少人;
(Ⅱ)已知該地區(qū)有X,Y兩種型號的“共享單車”,在市場體驗中,該體驗小組的高二級學(xué)生都租X型車,高一級學(xué)生都租Y型車.如果從組內(nèi)隨機(jī)抽取2人,求抽取的2人中至少有1人在市場體驗過程中租X型車的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列函數(shù)中,既是偶函數(shù)又在(-∞,0)上單調(diào)遞增的是( 。
A.y=x3B.y=ln|x|C.y=sinxD.$y=\frac{1}{x^2}$

查看答案和解析>>

同步練習(xí)冊答案