6.設(shè)全集為R,A={x|9-x2>0},B={x|-1<x<5},則A∩∁RB=(  )
A.(-3,3)B.(-3,-1)C.(-3,0)D.(-3,-1]

分析 求出集合A中不等式的解集,確定出集合A,由全集為R,求出集合B的補(bǔ)集,找出A和B補(bǔ)集的公共部分,即可求出所求的集合.

解答 解:由集合A中的不等式9-x2>0,因式分解得:(x-3)(x+3)<0,
解得:-3<x<3,
∴集合A=(-3,3),
∵B={x|-1<x<5}=(-1,5)
又全集R,∴CRB=(-∞.,-1]∪[5,+∞),
則A∩(CRB)=(-3,-1].
故選:D

點(diǎn)評(píng) 此題考查了交、并、補(bǔ)集的混合運(yùn)算,是高考中?嫉幕绢}型.學(xué)生求補(bǔ)集時(shí)注意全集的范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合M={x||x|=1},N={x|$\frac{1}{2}$<2x<4,x∈Z},則M∩N等于( 。
A.{-1,1}B.{1}C.{0}D.{-1,0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在四棱錐P-ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,PC=2,E是PB上的點(diǎn).
(1)求證:平面EAC⊥平面PBC;
(2)若E是PB的中點(diǎn),求二面角P-AC-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.寫出以下各數(shù)列的一個(gè)通項(xiàng)公式
(1)數(shù)列1,$\frac{2}{3}$,$\frac{3}{5}$,$\frac{4}{7}$,$\frac{5}{9}$,…
(2)數(shù)列$\frac{2}{3}$,-$\frac{4}{5}$,$\frac{6}{7}$,-$\frac{8}{9}$,…
(3)數(shù)列0.8,0.88,0.888,…

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若將函數(shù)y=cos 2x的圖象向左平移$\frac{π}{12}$個(gè)單位長度,則平移后圖象的對(duì)稱軸為( 。
A.x=$\frac{kπ}{2}$-$\frac{π}{6}$ (k∈Z)B.x=$\frac{kπ}{2}$+$\frac{π}{6}$ (k∈Z)C.x=$\frac{kπ}{2}$-$\frac{π}{12}$ (k∈Z)D.x=$\frac{kπ}{2}$+$\frac{π}{12}$ (k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.求下列函數(shù)的值域:
(1)y=x2-2x+3,x∈[0,3)
   (2)y=x+$\sqrt{2x+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知某幾何體的正視圖和側(cè)視圖均如圖所示,給出下列5個(gè)圖形:

其中可以作為該幾何體的俯視圖的圖形個(gè)數(shù)是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,以F2為圓心,|F1F2|為半徑的圓與雙曲線在第一、二象限內(nèi)依次交于A,B兩點(diǎn),若3|F1B|=|F2A|,則該雙曲線的離心率是( 。
A.$\frac{5}{4}$B.$\frac{4}{3}$C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.拋物線y2=4x的準(zhǔn)線與雙曲線$\frac{x^2}{4}-\frac{y^2}{3}=1$漸近線圍成三角形的面積為( 。
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{1}{2}$C.$\sqrt{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案