16.設(shè){an}是首項(xiàng)為1的正項(xiàng)數(shù)列,且$({n+1})a_{n+1}^2-na_n^2+{a_{n+1}}{a_n}=0$(n=1,2,3,…),則它的通項(xiàng)公式是a100=( 。
A.100B.$\frac{1}{100}$C.101D.$\frac{1}{101}$

分析 通過(guò)在$({n+1})a_{n+1}^2-na_n^2+{a_{n+1}}{a_n}=0$中將an+1看成是未知數(shù)、an與n看出常數(shù),利用求根公式、化簡(jiǎn)可知$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{n}{n+1}$,進(jìn)而利用累乘法可得到數(shù)列的通項(xiàng)an,計(jì)算即得結(jié)論

解答 解:∵$({n+1})a_{n+1}^2-na_n^2+{a_{n+1}}{a_n}=0$,
∴(n+1)${{a}_{n+1}}^{2}$+anan+1-n${{a}_{n}}^{2}$=0,
∴an+1=$\frac{-{a}_{n}±\sqrt{{{a}_{n}}^{2}+4(n+1)•n•{{a}_{n}}^{2}}}{2(n+1)}$
=$\frac{-1±\sqrt{1+4n(n-1)}}{2(n+1)}•$an,
又∵an>0,∴an+1=$\frac{n}{n+1}$•an,即$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{n}{n+1}$,
∴$\frac{{a}_{2}}{{a}_{1}}$•$\frac{{a}_{3}}{{a}_{2}}$•…•$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{1}{2}$•$\frac{2}{3}$•…•$\frac{n-1}{n}$,
即$\frac{{a}_{n}}{{a}_{1}}$=$\frac{1}{n}$,
又∵a1=1,∴an=$\frac{1}{n}$,
∴a100=$\frac{1}{100}$,
故選:B.

點(diǎn)評(píng) 本題主要考查數(shù)列遞推關(guān)系式的應(yīng)用和累乘法.求數(shù)列通項(xiàng)公式的一般方法有:公式法、累加法、累乘法、構(gòu)造法等,注意解題方法的積累,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若A${\;}_{n}^{2}$=4C${\;}_{n-1}^{2}$,則n的值為( 。
A.7B.6C.5D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.在空間直角坐標(biāo)系中,點(diǎn)P(-2,1,3)關(guān)于坐標(biāo)平面xOy對(duì)稱的點(diǎn)的坐標(biāo)為(-2,1,-3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)函數(shù)f(x)=cos2($\frac{π}{2}+x$)+$\sqrt{3}$sin($\frac{π}{2}$+x)cos($\frac{5π}{2}$-x),x∈R.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間,并求f(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{6}$]上的最小值;
(2)在三角形ABC中,a,b,c分別是角A,B,C的對(duì)邊,A為銳角,若f(A)+f(-A)=$\frac{3}{2}$,b+c=7,三角形ABC的面積為2$\sqrt{3}$,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知數(shù)列{an},{bn},{cn}滿足(an+1-an)(bn+1-bn)=cn(n∈N*).
(1)若{bn]為等差數(shù)列,b1=c1=2,an=2n,求數(shù)列{bn}的前n項(xiàng)和Sn;
(2)設(shè)cn=2n+n,an=$\frac{1+(-1)^{n}}{2}$.當(dāng)b1=1時(shí),求數(shù)列{bn]的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.若函數(shù)f(x)在定義域D內(nèi)的某個(gè)區(qū)間I上是增函數(shù),且F(x)=$\frac{f(x)}{x}$在I上也是增函數(shù),則稱y=f(x)是I上的“完美增函數(shù)”.已知f(x)=ex+x,g(x)=ex+x-lnx+1.
(1)判斷函數(shù)f(x)是否為區(qū)間(0,+∞)上的“完美增函數(shù)”;
(2)若函數(shù)g(x)是區(qū)間$[{\frac{m}{2},+∞})$上的“完美增函數(shù)”,求整數(shù)m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在平面直角坐標(biāo)系中,集合A={(x,y)|y=x},集合B={(x,y)|$\left\{\begin{array}{l}{2x-y=2}\\{x+2y=6}\end{array}\right.$},則集合A與B的關(guān)系是
(  )
A.A=BB.A⊆BC.B∈AD.B⊆A

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若命題p:x2+2x+a=0有實(shí)根,命題q:函數(shù)f(x)=(a2-a)x是增函數(shù),若p∨q為真,p∧q為假,則a的取值范圍是(  )
A.a>0B.a≥0C.a>1D.a≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)$f(x)=2{sin^2}(\frac{π}{4}+x)+\sqrt{3}$cos2x.
(1)求函數(shù)f(x)的最小正周期和對(duì)稱軸方程;
(2)若關(guān)于x的方程f(x)-m=2在$x∈[0,\frac{π}{2}]$上有兩個(gè)不同的解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案