分析 (1)通過在(an+1-an)(bn+1-bn)=cn中令n=1,進(jìn)而計(jì)算即得結(jié)論;
(2)通過an+1-an=(-1)n+1易知需要對(duì)n的奇偶性分情況討論,利用疊加法計(jì)算即得結(jié)論.
解答 解:(1)記數(shù)列{bn]的公差為d,
依題意,(a2-a1)(b2-b1)=c1,
∴(4-2)d=2,即d=1,
∴bn=2+(n-1)=n+1,
∴Sn=$\frac{n(n+1+2)}{2}$=$\frac{n(n+3)}{2}$;
(2)∵an=$\frac{1+(-1)^{n}}{2}$,
∴an+1-an=$\frac{1+(-1)^{n+1}}{2}$-$\frac{1+(-1)^{n}}{2}$=(-1)n+1,
∵cn=2n+n,
∴bn+1-bn=$\frac{{c}_{n}}{{a}_{n+1}-{a}_{n}}$=(-1)n+1•(2n+n),
∴bn-bn-1=(-1)n•(2n-1+n-1)(n≥2),
bn-1-bn-2=(-1)n-1•(2n-2+n-2),
b3-b2=(-1)3•(22+2),
b2-b1=(-1)2•(21+1),
當(dāng)n=2k時(shí),以上各式相加得:bn-b1=(2-22+23-…-2n-2+2n-1)+[1-2+3-…-(n-2)+(n-1)]
=$\frac{2[1-(-2)^{n-1}]}{1-(-2)}$+$\frac{n}{2}$
=$\frac{2+{2}^{n}}{3}$+$\frac{n}{2}$,
∴bn=b1+$\frac{2+{2}^{n}}{3}$+$\frac{n}{2}$=$\frac{{2}^{n}}{3}$+$\frac{n}{2}$+$\frac{5}{3}$;
當(dāng)n=2k-1時(shí),bn=bn+1-(-1)n+1(2n+n)
=$\frac{{2}^{n+1}}{3}$+$\frac{n+1}{2}$+$\frac{5}{3}$-2n-n
=-$\frac{{2}^{n}}{3}$-$\frac{n}{2}$+$\frac{13}{6}$;
綜上所述,bn=$\left\{\begin{array}{l}{-\frac{{2}^{n}}{3}-\frac{n}{2}+\frac{13}{6},}&{n=2k-1}\\{\frac{{2}^{n}}{3}+\frac{n}{2}+\frac{5}{3},}&{n=2k}\end{array}\right.$.
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)及前n項(xiàng)和,考查分類討論的思想,注意解題方法的積累,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若a>b,則$\frac{1}{a}$<$\frac{1}$ | |
B. | 函數(shù)f(x)=ex-2的零點(diǎn)落在區(qū)間(0,1)內(nèi) | |
C. | 函數(shù)f(x)=x+$\frac{1}{x}$的最小值為2 | |
D. | 若m=4,則直線2x+my+1=0與直線mx+8y+2=0互相平行 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 100 | B. | $\frac{1}{100}$ | C. | 101 | D. | $\frac{1}{101}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-4,-5) | B. | (7,6) | C. | (-5,-4) | D. | (6,7) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 22014-1 | B. | 21007-1 | C. | 21007-3 | D. | 21007-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -110 | B. | -90 | C. | 90 | D. | 110 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com