15.若復數(shù)z滿足$\frac{1-i}{z}$=-i,其中i為虛數(shù)單位,則$\overline{z}$=1-i.

分析 利用復數(shù)代數(shù)形式的乘除運算化簡求得z,則$\overline{z}$可求.

解答 解:由$\frac{1-i}{z}$=-i,得$z=\frac{1-i}{-i}=\frac{(1-i)i}{-{i}^{2}}=1+i$,
∴$\overline{z}=1-i$.
故答案為:1-i.

點評 本題考查復數(shù)代數(shù)形式的乘除運算,考查共軛復數(shù)的概念,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

5.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,橢圓C與y軸交于A、B兩點,|AB|=2.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知點P是橢圓C上的動點,且直線PA,PB與直線x=4分別交于M、N兩點,是否存在點P,使得以MN為直徑的圓經過點(2,0)?若存在,求出點P的橫坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.小冉有3條不同款式的裙子,5雙不同款式的靴子,某日她要去參加聚會,若穿裙子和靴子,則不同的穿著搭配方式的種數(shù)為( 。
A.7B.8C.15D.125

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.若函數(shù)f(x)=4sin(2x+φ)(|φ|<$\frac{π}{2}$)的圖象關于直線x=$\frac{π}{12}$對稱,且當x1,x2∈(-$\frac{7π}{6}$,-$\frac{5π}{12}$),x1≠x2時,f(x1)=f(x2),則f(x1+x2)等于( 。
A.4B.2$\sqrt{3}$C.2$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.如果曲線y=2sin$\frac{x}{2}$的兩條互相垂直的切線交于P點,則P點的坐標不可能是( 。
A.(π,π)B.(3π,-π)C.(5π,-π)D.(7π,-π)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知二次函數(shù)f(x)=ax2+bx+c(a≠0),若關于x的不等式f(x)>0的解集為{x|x<-2或x>4},則下列結論正確的是( 。
A.a>0,-$\frac{2a}$=1B.a<0,$\frac{c}{a}$=-8C.a<0,-$\frac{2a}$=-1D.a>0,$\frac{c}{a}$=8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.求下列各函數(shù)的微分:
(1)y=ln(x2+1);
(2)y=e${\;}^{{x}^{3}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知數(shù)列{an}中,a1=1,an+1=an-n,求an

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知定義在R上的函數(shù)f(x)是奇函數(shù),滿足f(x+3)=f(x),f(-2)=-3,數(shù)列{an}滿足a1=-1,且前n項和Sn滿足$\frac{S_n}{n}=2×\frac{a_n}{n}+1$,則f(a5)+f(a6)=(  )
A.3B.-3C.0D.6

查看答案和解析>>

同步練習冊答案