【題目】已知函數(shù).

1)當(dāng)時,求函數(shù)在點處的切線方程;

2)若函數(shù)有兩個不同極值點,求實數(shù)的取值范圍;

3)當(dāng)時,求證:對任意恒成立.

【答案】123)見解析

【解析】

1)當(dāng)時,求導(dǎo)數(shù),將切點橫坐標(biāo)帶入導(dǎo)數(shù)得到斜率,再計算切線方程.

2)求導(dǎo),取導(dǎo)數(shù)為0,參數(shù)分離得到,設(shè)右邊為新函數(shù),求出其單調(diào)性,求得取值范圍得到答案.

3)將導(dǎo)函數(shù)代入不等式,化簡得到,設(shè)左邊為新函數(shù),根據(jù)單調(diào)性得到函數(shù)最值,得到證明.

1)當(dāng)時,

,又∵

,即

∴函 數(shù) 在點處的切線方程為

2)由題意知,函數(shù)的定義域為,

,可得,

當(dāng)時,方程僅有一解,∴,

則由題可知直線與函數(shù)的圖像有兩個不同的交點.

∴當(dāng)時,,為單調(diào)遞減函數(shù);

當(dāng)時,,為單調(diào)遞增函數(shù).

又∵,,且當(dāng)時,

,

實數(shù)的取值范圍為

3)∵

∴要證對任意,恒成立

即證成立

即證成立

設(shè)

時,易知上為減函數(shù)

上為減函數(shù)

成立

即對任意,恒成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex-ax-1,其中e是自然對數(shù)的底數(shù),實數(shù)a是常數(shù).

(1)設(shè)a=e,求函數(shù)f(x)的圖象在點(1,f(1))處的切線方程;

(2)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】、滿足約束條件,若取得最大值的最優(yōu)解不唯一,則實數(shù)的值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某機構(gòu)為了解某地區(qū)中學(xué)生在校月消費情況,隨機抽取了100名中學(xué)生進行調(diào)查.右圖是根據(jù)調(diào)查的結(jié)果繪制的學(xué)生在校月消費金額的頻率分布直方圖.已知[350,450),[450,550),[550,650)三個金額段的學(xué)生人數(shù)成等差數(shù)列,將月消費金額不低于550元的學(xué)生稱為高消費群” .

(1)求m,n的值,并求這100名學(xué)生月消費金額的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

(2)根據(jù)已知條件完成下面2×2列聯(lián)表,并判斷能否有90%的把握認為高消費群與性別有關(guān)?

高消費群

非高消費群

合計

10

50

合計

(參考公式:,其中

P()

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著智能手機的普及,各類手機娛樂軟件也如雨后春筍般涌現(xiàn). 如表中統(tǒng)計的是某手機娛樂軟件自2018年8月初推出后至2019年4月底的月新注冊用戶數(shù),記月份代碼為(如對應(yīng)于2018年8月份,對應(yīng)于2018年9月份,…,對應(yīng)于2019年4月份),月新注冊用戶數(shù)為(單位:百萬人)

(1)請依據(jù)上表的統(tǒng)計數(shù)據(jù),判斷月新注冊用戶與月份線性相關(guān)性的強弱;

(2)求出月新注冊用戶關(guān)于月份的線性回歸方程,并預(yù)測2019年5月份的新注冊用戶總數(shù).

參考數(shù)據(jù):,,.

回歸直線的斜率和截距公式:,.

相關(guān)系數(shù)(當(dāng)時,認為兩相關(guān)變量相關(guān)性很強. )

注意:兩問的計算結(jié)果均保留兩位小數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2名男生、3名女生,全體排成一行,問下列情形各有多少種不同的排法?(以下各題請用數(shù)字作答)

1)甲不在中間也不在兩端;

2)甲、乙兩人必須排在兩端;

3)男、女生分別排在一起;

4)男女相間;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的奇函數(shù)有最小正周期,且時,.

(1)求上的解析式;

(2)判斷上的單調(diào)性,并給予證明;

(3)當(dāng)為何值時,關(guān)于方程上有實數(shù)解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市戶居民的月平均用電量(單位:度),以,,,,,分組的頻率分布直方圖如圖.

1)求直方圖中的值;

2)求月平均用電量的眾數(shù)和中位數(shù);

3)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一工廠生產(chǎn)了某種產(chǎn)品700件,該工廠需要對這些產(chǎn)品的性能進行檢測現(xiàn)決定利用隨機數(shù)表法從中抽取100件產(chǎn)品進行抽樣檢測,將700件產(chǎn)品按001,002,…,700進行編號

1)如果從第8行第4列的數(shù)開始向右讀,請你依次寫出最先檢測的3件產(chǎn)品的編號;(下面摘取了隨機數(shù)表的第79行)

84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76

63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79

33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54

2)檢測結(jié)果分為優(yōu)等、合格、不合格三個等級,抽取的100件產(chǎn)品的安全性能和環(huán)保性能的檢測結(jié)果如下表(橫向和縱向分別表示安全性能和環(huán)保性能):

i)若在該樣本中,產(chǎn)品環(huán)保性能是優(yōu)等的概率為34%,求的值;

ii)若,求在安全性能不合格的產(chǎn)品中,環(huán)保性能為優(yōu)等的件數(shù)比不合格的件數(shù)少的概率.

件數(shù)

環(huán)保性能

優(yōu)等

合格

不合格

安全性能

優(yōu)等

6

20

5

合格

10

18

6

不合格

m

4

n

查看答案和解析>>

同步練習(xí)冊答案