3.在幾何體EFABCD中,矩形ABCD所在的平面和梯形ABEF所在的平面互相垂直,且AB∥EF,AB=2EF,設(shè)平面CBF將幾何體EFABCD分成的兩個錐體的體積分別為VF-ABCD,VF-CBE,求VF-ABCD:VF-CBE的值為(  )
A.2:1B.3:1C.4:1D.5:1

分析 推導(dǎo)出VF-ABCD=2VF-ACD=2VD-AFB,S△AFB=2S△EFB,從而VD-AFB=2VC-EFB,由此能求出VF-ABCD:VF-CBE的值.

解答 解:∵矩形ABCD所在的平面和梯形ABEF所在的平面互相垂直,且AB∥EF,AB=2EF,
∴BC⊥平面ABEF,AF?平面ABEF,∴BC⊥AF,
又AF⊥BF,∴AF⊥平面BFC,
∴VF-ABCD=2VF-ACD=2VD-AFB,
VF-CBE=VC-EFB,
∵AB=2EF,∴S△AFB=2S△EFB,∴VD-AFB=2VC-EFB
∴VF-ABCD:VF-CBE=4:1.
故選:C.

點評 本題考查兩個幾何體的體積的比值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)$y=x+\frac{t}{x}$有如下性質(zhì):如果常數(shù)t>0,那么該函數(shù)在$(0,\sqrt{t}]$上是減函數(shù),在$[\sqrt{t},+∞)$上是增函數(shù).
(1)已知f(x)=$\frac{4{x}^{2}+4x+5}{2x+1}$-8,x∈[0,1],利用上述性質(zhì),求函數(shù)f(x)的單調(diào)區(qū)間和值域;
(2)對于(1)中的函數(shù)f(x)和函數(shù)g(x)=-x-2a,若對任意x1∈[0,1],總存在x2∈[0,1],使得g(x2)=f(x1)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)y=$\sqrt{-{x}^{2}+4x}$的值域是( 。
A.(-∞,4]B.(-∞,2]C.[0,2]D.[0,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知點P是橢圓16x2+25y2=1600上一點,且在x軸上方,F(xiàn)1,F(xiàn)2是橢圓的左,右焦點,直線PF2的斜率為$-4\sqrt{3}$.
(1)求P點的坐標(biāo);
(2)求△PF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在條件$\left\{\begin{array}{l}{2x-y-6≤0}\\{x-y+2≥0}\\{x≥0}\\{y≥0}\end{array}\right.$,下,目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為40,則$\frac{5}{a}+\frac{1}$的最小值是$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.復(fù)數(shù)z1,z2滿足|z1|=|z2|=1,|z1+z2|=$\sqrt{2}$,則|z1-z2|=( 。
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在棱長為1的正方體ABCD-A1B1C1D1中,點P是正方體棱上一點(不包括棱的端點),若滿足|PA|+|PC1|=m的點P的個數(shù)為6,則m的取值范圍是$(\sqrt{3},\sqrt{5})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知在平面直角坐標(biāo)系xOy中的一個橢圓,它的中心在原點,左焦點為F(-$\sqrt{3}$,0),右頂點為D(2,0),設(shè)點A(1,0.5).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若P是橢圓上的動點,求線段PA中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若函數(shù)f(x)=ax3-x2+4x+3恰有三個零點,則實數(shù)a的取值范圍是(-2,0)∪(0,$\frac{14}{243}$).

查看答案和解析>>

同步練習(xí)冊答案