精英家教網 > 高中數學 > 題目詳情
已知過點A(0,1),B(4,a)且與x軸相切的圓只有一個,求a的值及所對應的圓的方程.
【答案】分析:分兩種情況:(1)B點剛好為圓與x軸相切的切點,所以B在x軸上得到a=0,因為直線AB的中垂線與x=4的交點為圓心,
所以先求出中垂線方程,方法是利用中點坐標公式求出A與B的中點坐標,根據兩直線垂直時斜率乘積為-1求出斜率,然后與x=4聯立可得圓心坐標,圓心的縱坐標為半徑,得到相應圓的方程;(2)AB與x軸平行時即得到a=1,圓與x軸相切,得到AB的中垂線方程為x=2,設出圓心坐標,根據圓心到A的距離等于圓心的縱坐標求出圓心坐標,而圓的半徑為圓心的縱坐標,得到圓的方程.
解答:解:(1)設圓心坐標為(x,y),B點為切點時,B在x軸上,所以a=0.則B(4,0),所以AB的中點坐標為(2,),直線AB的斜率為=-,則AB中垂線的斜率為4,所以AB中垂線的方程為y-=4(x-2)與x=4聯立解得x=4,y=,所以圓的方程為:(x-4)2+=

(2)當a=1時,AB與x軸平行,則AB的中垂線方程為x=2,設圓心坐標為(2,y),根據勾股定理得:y2=22+(y-1)2,解得y=,所以圓的方程為:(x-2)2+=
綜上:當a=0時,相對應的圓的方程為:(x-4)2+=;當a=1時,相對應的圓的方程為:(x-2)2+=
點評:此題是一道綜合題,要求學生會根據兩點坐標求其中垂線方程,利用運用圓的性質定理,會根據圓心和半徑寫出圓的標準方程.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知過點A(0,1),且方向向量為
a
=(1,k)
的直線l與⊙C:(x-2)2+(y-3)2=1,相交于M、N兩點.
(1)求實數k的取值范圍;
(2)求證:
AM
AN
=定值;
(3)若O為坐標原點,且
OM
ON
=12,求k的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知過點A(0,1)斜率為k的直線l與圓(x-2)2+(y-3)2=1相交于M,N兩點.
①求實數k的取值范圍;
②求線段MN的中點軌跡方程;
③求證:
AM
AN
為定值;
④若O為坐標原點,且
OM
ON
=12
,求k的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知過點A(0,1)的直線l,斜率為k,與圓C:(x-2)2+(y-3)2=1相交于M、N兩個不同點.
(1)求實數k取值范圍;
(2)若O為坐標原點,且
OM
ON
=12
,求k的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,已知過點A(0,1)的直線l與拋物線C:y=x2交于M,N兩點,又拋物線C在M,N兩點處的兩切線交于點B,M,N兩點的橫坐標分別為x1,x2
(1)求x1x2的值;
(2)求B點的縱坐標t的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知過點A(0,1),B(4,a)且與x軸相切的圓只有一個,求a的值及所對應的圓的方程.

查看答案和解析>>

同步練習冊答案