已知等差數(shù)列{an}中,公差d>0,其前n項和為Sn,且滿足a2•a3=45,a1+a4=14.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)(n∈N*),數(shù)列{bn}的前n項和為Tn,求證:;
(3)是否存在常數(shù)c(c≠0),使得數(shù)列為等差數(shù)列?若存在,試求出c;若不存在,說明理由.
【答案】分析:(1)根據(jù)題意,由等差數(shù)列的性質(zhì),有a1+a4=a2+a3=14,與a2•a3=45聯(lián)立,計算可得數(shù)列{an}的通項公式;
(2)根據(jù)題意,將數(shù)列{an}的通項公式代入bn可得bn的通項公式,進(jìn)而運(yùn)算消項求和法,計算Tn,可以得證;
(3)首先計算Sn,代入數(shù)列,可得其通項公式,運(yùn)用等差中項的性質(zhì)分析,可得答案.
解答:(1)解:∵等差數(shù)列{an}中,公差d>0,
(4分)
(2)∵
,(6分)
>0
∴Tn+1>Tn
(8分)
(3)=,
由2c2=c1+c3,化簡得2c2+c=0,c≠0,

反之,令,即得cn=2n,顯然數(shù)列{cn}為等差數(shù)列,
∴當(dāng)且僅當(dāng)時,數(shù)列{cn}為等差數(shù)列.(12分)
點評:本題考查等差數(shù)列的通項公式的運(yùn)用,注意結(jié)合等差數(shù)列的性質(zhì)分析,可以減少運(yùn)算量,降低難度.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an},公差d不為零,a1=1,且a2,a5,a14成等比數(shù)列;
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}滿足bn=an3n-1,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中:a3+a5+a7=9,則a5=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足:a5=11,a2+a6=18.
(1)求{an}的通項公式;
(2)若bn=an+q an(q>0),求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
(1)求數(shù)列{an}的通項公式;     
(2)求數(shù)列{|an|}的前n項和;
(3)求數(shù)列{
an2n-1
}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知等差數(shù)列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若{an}為遞增數(shù)列,請根據(jù)如圖的程序框圖,求輸出框中S的值(要求寫出解答過程).

查看答案和解析>>

同步練習(xí)冊答案