【題目】在信息時(shí)代的今天,隨著手機(jī)的發(fā)展,“微信”越來越成為人們交流的一種方式,某機(jī)構(gòu)對“使用微信交流”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽取了100人,他們年齡的頻數(shù)分布及對“使用微信交流”贊成的人數(shù)如下表:(注:年齡單位:歲)

年齡

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

[65,75)

頻數(shù)

10

30

30

20

5

5

贊成人數(shù)

8

25

24

10

2

1

(1)若以“年齡45歲為分界點(diǎn)”,由以上統(tǒng)計(jì)數(shù)據(jù)完成下面的2×2列聯(lián)表,并通過計(jì)算判斷是否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為“使用微信交流的態(tài)度與人的年齡有關(guān)”?

年齡不低于45歲的人數(shù)

年齡低于45歲的人數(shù)

合計(jì)

贊成

不贊成

合計(jì)

若從年齡在[55,65),[65,75)的別調(diào)查的人中各隨機(jī)選取兩人進(jìn)行追蹤調(diào)查,記選中的4人中贊成“使用微信交流”的人數(shù)為X,求隨機(jī)變量X的分布列及數(shù)學(xué)期望.

參考數(shù)據(jù):

P(K2≥k0

0.025

0.010

0.005

0.001

k0

3.841

6.635

7.879

10.828

參考公式:K2=,其中n=a+b+c+d.

【答案】(1)在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為使用微信交流的態(tài)度與人的年齡有關(guān)

(2)X的分布列是 :

X

0

1

2

3

P

E(X)=

【解析】

(1)根據(jù)表格中數(shù)據(jù),完成列聯(lián)表,由列聯(lián)表中數(shù)據(jù)利用公式求得 ,與鄰界值比較,即可得到結(jié)論;(2)的可能取值為,結(jié)合組合知識,利用古典概型概率公式求出各隨機(jī)變量對應(yīng)的概率,從而可得分布列,進(jìn)而利用期望公式可得的數(shù)學(xué)期望.

(1)根據(jù)頻數(shù)分布,填寫2×2列聯(lián)表如下;

年齡不低于45歲的人數(shù)

年齡低于45歲的人數(shù)

合計(jì)

贊成

13

57

70

不贊成

17

13

30

合計(jì)

30

70

100

計(jì)算觀測值K2==≈14.512>10.828,

對照臨界值表知,在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為使用微信交流的態(tài)度與人的年齡有關(guān)”;

(2)根據(jù)題意,X所有可能取值有0,1,2,3,

P(X=0)==

P(X=1)=+=,

P(X=2)=+=,

P(X=3)==,

所以X的分布列是 :

X

0

1

2

3

P

所以X的期望值是E(X)=0×+1×+2×+3×=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,角為始邊,終邊與單位圓相交于點(diǎn).過點(diǎn)的圓的切線交軸于點(diǎn),點(diǎn)的橫坐標(biāo)關(guān)于角的函數(shù)記為. 則下列關(guān)于函數(shù)的說法正確的( )

A. 的定義域是

B. 的圖象的對稱中心是

C. 的單調(diào)遞增區(qū)間是

D. 對定義域內(nèi)的均滿足

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高速公路隧道內(nèi)設(shè)雙行線公路,其截面由一段圓弧和一個(gè)長方形的三邊構(gòu)成(如圖所示).已知隧道總寬度,行車道總寬度,側(cè)墻面高, ,弧頂高

)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求圓弧所在的圓的方程.

)為保證安全,要求行駛車輛頂部(設(shè)為平頂)與隧道頂部在豎直方向上的高度之差至少要有.請計(jì)算車輛通過隧道的限制高度是多少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】每年10月中上旬是小麥的最佳種植時(shí)間,但小麥的發(fā)芽會受到土壤、氣候等多方面因素的影響.某科技小組為了解晝夜溫差的大小與小麥發(fā)芽的多少之間的關(guān)系,在不同的溫差下統(tǒng)計(jì)了100顆小麥種子的發(fā)芽數(shù),得到了如下數(shù)據(jù):

溫差

8

10

11

12

13

發(fā)芽數(shù)(顆)

79

81

85

86

90

(1)請根據(jù)統(tǒng)計(jì)的最后三組數(shù)據(jù),求出關(guān)于的線性回歸方程;

(2)若由(1)中的線性回歸方程得到的估計(jì)值與前兩組數(shù)據(jù)的實(shí)際值誤差均不超過兩顆,則認(rèn)為線性回歸方程是可靠的,試判斷(1)中得到的線性回歸方程是否可靠;

(3)若100顆小麥種子的發(fā)芽率為顆,則記為的發(fā)芽率,當(dāng)發(fā)芽率為時(shí),平均每畝地的收益為元,某農(nóng)場有土地10萬畝,小麥種植期間晝夜溫差大約為,根據(jù)(1)中得到的線性回歸方程估計(jì)該農(nóng)場種植小麥所獲得的收益.

附:在線性回歸方程中,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在圓環(huán)形路上有均勻分布的四家工廠甲乙丙丁,每家工廠都有足夠的倉庫供產(chǎn)品儲存.現(xiàn)要將所有產(chǎn)品集中到一家工廠的倉庫儲存,已知甲乙丙丁四家工廠的產(chǎn)量之比為1235.若運(yùn)費(fèi)與路程運(yùn)的數(shù)量成正比例,為使選定的工廠倉庫儲存所有產(chǎn)品時(shí)總的運(yùn)費(fèi)最省,應(yīng)選的工廠是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上函數(shù),若函數(shù)關(guān)于點(diǎn)對稱,且則關(guān)于x的方程()n個(gè)不同的實(shí)數(shù)解,則n的所有可能的值為( )

A.2B.4

C.24D.246

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在下列向量組中,可以把向量=(3,2)表示出來的是(   )

A. =(0,0),=(1,2)B. =(-1,2),=(5,-2)

C. =(3,5),=(6,10)D. =(2,-3),=(-2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某保險(xiǎn)公司決定每月給推銷員確定個(gè)具體的銷售目標(biāo),對推銷員實(shí)行目標(biāo)管理.銷售目標(biāo)確定的適當(dāng)與否,直接影響公司的經(jīng)濟(jì)效益和推銷員的工作積極性,為此,該公司當(dāng)月隨機(jī)抽取了50位推銷員上個(gè)月的月銷售額(單位:萬元),繪制成如圖所示的頻率分布直方圖.

1)①根據(jù)圖中數(shù)據(jù),求出月銷售額在小組內(nèi)的頻率.

②根據(jù)直方圖估計(jì),月銷售目標(biāo)定為多少萬元時(shí),能夠使70%的推銷員完成任務(wù)?并說明理由.

2)該公司決定從月銷售額為的兩個(gè)小組中,選取2位推銷員介紹銷售經(jīng)驗(yàn),求選出的推銷員來自同一個(gè)小組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓為參數(shù)),ABC上的動(dòng)點(diǎn),且滿足O為坐標(biāo)原點(diǎn)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立坐標(biāo)系,點(diǎn)D的極坐標(biāo)為.

1)求橢圓C的極坐標(biāo)方程和點(diǎn)D的直角坐標(biāo);

2)利用橢圓C的極坐標(biāo)方程證明為定值.

查看答案和解析>>

同步練習(xí)冊答案