已知命題p:關(guān)于x的函數(shù)f(x)=2x2+ax-1在[3,+∞)上是增函數(shù);命題q:關(guān)于x的方程x2-ax+4=0有實(shí)數(shù)根.若pVq為真命題,p∧q為假命題,則實(shí)數(shù)a的取值范圍是( )
A.(-12,4)∪(4,+∞)
B.(-12,4]∪[4,+∞)
C.(-∞,-12)∪(-4,4)
D.[-12,+∞)
【答案】分析:根據(jù)一元二次函數(shù)的單調(diào)區(qū)間求出命題P為真命題的條件,利用解不等式求得一元二次方程存在實(shí)數(shù)根的條件;
再根據(jù)復(fù)合命題真值表判斷求解即可
解答:解:∵函數(shù)f(x)=2x2+ax-1在[3,+∞)上是增函數(shù),∴-≤3⇒a≥-12,
∴命題P為真命題的條件是:a≥-12;
∵關(guān)于x的方程x2-ax+4=0有實(shí)數(shù)根,∴△=a2-16≥0⇒a≥4或a≤-4,
∴命題q為真命題的條件是:a≥4或a≤-4;
∵pVq為真命題,p∧q為假命題,根據(jù)復(fù)合命題的真值表,命題P、命題q一真一假

∴a<-12或-4<a<4,
故選C
點(diǎn)評(píng):本題借助考查復(fù)合命題的真假判定,考查了一元二次函數(shù)的單調(diào)區(qū)間及一元二次方程存在根的判定.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題P:關(guān)于x的不等式x2+(a-1)x+1≤0的解集為∅,命題q:方程
x2
2
+
y2
a
=1表示焦點(diǎn)在y軸上的橢圓,若命題¬q為真命題,p∨q為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:關(guān)于x的方程x2-ax+4=0有實(shí)根,命題q:關(guān)于x函數(shù)y=2x2+ax+4在[3,+∞)上為增函數(shù),若“p或q”為真命題,“p且q”為假命題,則實(shí)數(shù)a取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:關(guān)于x的不等式x2-2x-a>0解集為R;命題q:曲線y=x2+(2a-3)x+1與x軸交于不同的兩點(diǎn).如果“p且q”為假命題,“p或q”為真命題,則實(shí)數(shù)a的取值范圍為
[-1,1)∪(
5
2
,+∞)
[-1,1)∪(
5
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:“關(guān)于x的方程x2-ax+a=0無(wú)實(shí)根”和命題q:“函數(shù)f(x)=x2-ax+a在區(qū)間[-1,+∞)上單調(diào).如果命題p∨q是假命題,那么,實(shí)數(shù)a的取值范圍是( 。
A、(0,4)B、(-∞,2]∪(0,4)C、(-2,0]∪[4,+∞)D、[-2,0)∪(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:關(guān)于x的方程x2-2x+a=0有實(shí)根,命題q:函數(shù)f(x)=(a+1)x+2是減函數(shù),若p∨q是真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案