16.已知$tan({π-α})=\frac{3}{4},α∈({\frac{π}{2},π})$,則cosα=(  )
A.$-\frac{4}{5}$B.$\frac{4}{5}$C.$-\frac{3}{5}$D.$\frac{3}{5}$

分析 利用誘導公式化解可得tanα的值,利用同角三角函數(shù)關系式可得答案.

解答 解:由$tan({π-α})=\frac{3}{4},α∈({\frac{π}{2},π})$,
則tanα=$-\frac{3}{4}$,即$\frac{sinα}{cosα}=-\frac{3}{4}$…①
又sin2α+cos2α=1…②,
由①②解得:cosα=$-\frac{4}{5}$.
故選A.

點評 本題考查了誘導公式化解和同角三角函數(shù)關系式的計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

6.已知數(shù)列{an}滿足a1=2,a2=3,an+2=3an+1-2an(n∈N*);
(1)求a3,a4,a5
(2)用歸納法猜想它的一個通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.某幾何體的三視圖如圖所示,則該幾何體的體積等于(  )
A.6+6πB.6+8πC.8+6πD.8+8π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.天干地支紀年法,源于中國.中國自古便有十天干與十二地支.
十天干:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;
十二地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.
天干地支紀年法是按順序以一個天干和一個地支相配,排列起來,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年為“甲子”,第二年為“乙丑”,第三年為“丙寅”,…,以此類推.排列到“癸酉”后,天干回到“甲”重新開始,即“甲戌”,“乙亥”,之后地支回到“子”重新開始,即“丙子”,…,以此類推.
已知2017年為丁酉年,那么到改革開放100年時,即2078年為戊戌年.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.(1+$\sqrt{x}}$)6(1+$\sqrt{x}$)4的展開式中x的系數(shù)是(  )
A.-4B.21C.45D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知函數(shù)$f(x)=\left\{\begin{array}{l}-2x-{x^2},x≤0\\|{lgx}|,x>0\end{array}\right.$,若a<b<c<d,且f(a)=f(b)=f(c)=f(d),則a+b+c+2d的取值范圍是(  )
A.$({3,\frac{201}{10}})$B.$({1,\frac{181}{10}})$C.$({2\sqrt{2},+∞})$D.$({2\sqrt{2}-2,+∞})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.在三棱錐P-ABC中,△PAC和△PBC是邊長為$\sqrt{2}$的等邊三角形,AB=2,O是AB中點,E是BC中點.
(Ⅰ)求證:平面PAB⊥平面ABC;
(Ⅱ)求直線PB與平面PAC所成角的正弦值的大小;
(Ⅲ)在棱PB上是否存在一點F,使得B-OF-E的余弦值為$\frac{{\sqrt{6}}}{6}$?若存在,指出點F在PB上的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若$A({3,\frac{π}{3}})$,$B({3,\frac{7π}{6}})$,則△AOB的面積為(  )
A.$\frac{{\sqrt{3}}}{4}$B.3C.$\frac{9}{4}$D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.在△ABC中,角A,B,C的對邊分別為a,b,c,若a=2,b=sinA+cosA=$\sqrt{2}$,則△ABC的面積為( 。
A.$\frac{\sqrt{6}+\sqrt{2}}{2}$B.$\frac{\sqrt{6}+\sqrt{2}}{4}$C.$\frac{\sqrt{3}+1}{4}$D.$\frac{\sqrt{3}+1}{2}$

查看答案和解析>>

同步練習冊答案