【題目】今年3月5日,國(guó)務(wù)院總理李克強(qiáng)作的政府工作報(bào)告中,提到要“懲戒學(xué)術(shù)不端,力戒學(xué)術(shù)不端,力戒浮躁之風(fēng)”.教育部日前公布的《教育部2019年部門預(yù)算》中透露,2019年教育部擬抽檢博士學(xué)位論文約6000篇,預(yù)算為800萬(wàn)元.國(guó)務(wù)院學(xué)位委員會(huì)、教育部2014年印發(fā)的《博士碩士學(xué)位論文抽檢辦法》通知中規(guī)定:每篇抽檢的學(xué)位論文送3位同行專家進(jìn)行評(píng)議,3位專家中有2位以上(含2位)專家評(píng)議意見(jiàn)為“不合格”的學(xué)位論文,將認(rèn)定為“存在問(wèn)題學(xué)位論文”.有且只有1位專家評(píng)議意見(jiàn)為“不合格”的學(xué)位論文,將再送2位同行專家進(jìn)得復(fù)評(píng),2位復(fù)評(píng)專家中有1位以上(含1位)專家評(píng)議意見(jiàn)為“不合格”的學(xué)位論文,將認(rèn)定為“存在問(wèn)題學(xué)位論文”.設(shè)每篇學(xué)位論文被每位專家評(píng)議為“不合格”的概率均為,且各篇學(xué)位論文是否被評(píng)議為“不合格”相互獨(dú)立.

(1)記一篇抽檢的學(xué)位論文被認(rèn)定為“存在問(wèn)題學(xué)位論文”的概率為,求;

(2)若擬定每篇抽檢論文不需要復(fù)評(píng)的評(píng)審費(fèi)用為900元,需要復(fù)評(píng)的評(píng)審費(fèi)用為1500元;除評(píng)審費(fèi)外,其它費(fèi)用總計(jì)為100萬(wàn)元.現(xiàn)以此方案實(shí)施,且抽檢論文為6000篇,問(wèn)是否會(huì)超過(guò)預(yù)算?并說(shuō)明理由.

【答案】(1);(2)若以此方案實(shí)施,不會(huì)超過(guò)預(yù)算.

【解析】

(1)先求出一篇學(xué)位論文初評(píng)被認(rèn)定為“存在問(wèn)題學(xué)位論文”的概率,再求出一篇學(xué)位論文復(fù)評(píng)被認(rèn)定為“存在問(wèn)題學(xué)位論文”的概率,再把它們相加即得解;(2)先求出

,再求出其最大值比較最大值和預(yù)算的大小即得解.

(1)因?yàn)橐黄獙W(xué)位論文初評(píng)被認(rèn)定為“存在問(wèn)題學(xué)位論文”的概率為,

一篇學(xué)位論文復(fù)評(píng)被認(rèn)定為“存在問(wèn)題學(xué)位論文”的概率為,

所以一篇學(xué)位論文被認(rèn)定為“存在問(wèn)題學(xué)位論文”的概率為

.

(2)設(shè)每篇學(xué)位論文的評(píng)審費(fèi)為元,則的可能取值為900,1500.

, ,

所以

.

,

.

當(dāng)時(shí),,單調(diào)遞增,

當(dāng)時(shí),,單調(diào)遞減,

所以的最大值為.

所以實(shí)施此方案,最高費(fèi)用為(萬(wàn)元).

綜上,若以此方案實(shí)施,不會(huì)超過(guò)預(yù)算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,左頂點(diǎn)為,左焦點(diǎn)為,點(diǎn)在橢圓上,直線與橢圓交于 兩點(diǎn),直線 分別與軸交于點(diǎn),

(Ⅰ)求橢圓的方程;

(Ⅱ)以為直徑的圓是否經(jīng)過(guò)定點(diǎn)?若經(jīng)過(guò),求出定點(diǎn)的坐標(biāo);若不經(jīng)過(guò),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】表示中的最大值,.已知函數(shù),

(1)設(shè)求函數(shù)上零點(diǎn)的個(gè)數(shù);

(2)試探討是否存在實(shí)數(shù),使得對(duì)恒成立若存在,的取值范圍;若不存在說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在四棱錐中,底面為直角梯形,,為等邊三角形,平面平面,的中點(diǎn).

(1)證明:;

(2)求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市戶居民的月平均用電量(單位:度),以,,,分組的頻率分布直方圖如圖.

1)求直方圖中的值;

2)求月平均用電量的眾數(shù)和中位數(shù);

3)在月平均用電量為,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】不重合的兩條直線和不重合的兩個(gè)平面,,下面的幾個(gè)命題:,且,則;與平面成等角,則,,且,則,,則,異面,且均與平面平行,則.在這5個(gè)命題中,真命題的個(gè)數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合,且下列三個(gè)關(guān)系:,中有且只有一個(gè)正確,則函數(shù)的值域是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年,依托用戶碎片化時(shí)間的娛樂(lè)需求、分享需求以及視頻態(tài)的信息負(fù)載力,短視頻快速崛起;與此同時(shí),移動(dòng)閱讀方興未艾,從側(cè)面反應(yīng)了人們對(duì)精神富足的一種追求,在習(xí)慣了大眾娛樂(lè)所帶來(lái)的短暫愉悅后,部分用戶依舊對(duì)有著傳統(tǒng)文學(xué)底蘊(yùn)的嚴(yán)肅閱讀青睞有加.

某讀書APP抽樣調(diào)查了非一線城市M和一線城市N100名用戶的日使用時(shí)長(zhǎng)(單位:分鐘),繪制成頻率分布直方圖如下,其中日使用時(shí)長(zhǎng)不低于60分鐘的用戶記為活躍用戶

1)請(qǐng)?zhí)顚懸韵?/span>列聯(lián)表,并判斷是否有995%的把握認(rèn)為用戶活躍與否與所在城市有關(guān)?

活躍用戶

不活躍用戶

合計(jì)

城市M

城市N

合計(jì)

2)以頻率估計(jì)概率,從城市M中任選2名用戶,從城市N中任選1名用戶,設(shè)這3名用戶中活躍用戶的人數(shù)為,求的分布列和數(shù)學(xué)期望.

3)該讀書APP還統(tǒng)計(jì)了20184個(gè)季度的用戶使用時(shí)長(zhǎng)y(單位:百萬(wàn)小時(shí)),發(fā)現(xiàn)y與季度()線性相關(guān),得到回歸直線為,已知這4個(gè)季度的用戶平均使用時(shí)長(zhǎng)為12.3百萬(wàn)小時(shí),試以此回歸方程估計(jì)2019年第一季度()該讀書APP用戶使用時(shí)長(zhǎng)約為多少百萬(wàn)小時(shí).

附:,其中

0.025

0.010

0.005

0.001

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)若上為單調(diào)遞增,求實(shí)數(shù)的取值范圍;

(2)若,且,求證:對(duì)定義域內(nèi)的任意實(shí)數(shù),不等式恒成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案