15.若y=x2+cosx+lnx,則y′=2x-sinx+$\frac{1}{x}$.

分析 根據(jù)函數(shù)的導(dǎo)數(shù)公式進(jìn)行求導(dǎo)即可.

解答 解:函數(shù)的導(dǎo)數(shù)為y′=2x-sinx+$\frac{1}{x}$,
故答案為:2x-sinx+$\frac{1}{x}$

點(diǎn)評(píng) 本題主要考查函數(shù)的導(dǎo)數(shù)的計(jì)算,根據(jù)函數(shù)的導(dǎo)數(shù)公式是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)數(shù)列{an}的前n項(xiàng)和Sn=2an-a1,且a1,a2+1,a3成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;   
(2)記數(shù)列$\{\frac{n}{a_n}\}$的前n項(xiàng)和Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.設(shè)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2+x,若f(2-a2)+f(a)>0,則實(shí)數(shù)a的取值范圍是(-1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知x>0,函數(shù)$y=\frac{36}{x}+x$的最小值是( 。
A.10B.11C.12D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知集合A={1,2,3,4},B={2,4,5},則A∩B=(  )
A.{2}B.{2,4}C.{2,4,5}D.{1,2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.函數(shù)$y=4-x-\frac{1}{x};(x≥2)$的最大值是$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.一輛卡車(chē)寬2.7米,要經(jīng)過(guò)一個(gè)半徑為4.5米的半圓形隧道,該隧道為雙向車(chē)道,中間有隔離帶,則這輛卡車(chē)的平頂車(chē)篷篷頂距離地面的高度不得超過(guò)( 。
A.1.4米B.3.0米C.3.6米D.4.5米

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知實(shí)數(shù)x,y滿(mǎn)足(x-3)2+y2=3,則$\frac{y}{x-1}$的最大值是$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.如果直線l,m與平面α,β,γ滿(mǎn)足:m在平面α內(nèi),且m⊥γ,l=β∩γ,l∥α,那么必有( 。
A.α丄γ,m∥βB.α 丄γ,l丄mC.m∥β,l丄mD.α∥β,γ丄β

查看答案和解析>>

同步練習(xí)冊(cè)答案