已知P為函數(shù)y=f(x)的圖象上一點,點P的橫坐標是2,若在點P處的切線方程是y=x+1,則f′(2)=
 
考點:利用導數(shù)研究曲線上某點切線方程
專題:計算題,導數(shù)的概念及應用
分析:利用導數(shù)的幾何意義,即可得出結(jié)論.
解答: 解:∵函數(shù)y=f(x)在點P處的切線方程是y=x+1,
∴f′(x)=1,
∵點P的橫坐標是2,
∴f′(2)=1.
故答案為:1.
點評:本題主要考查了導數(shù)的幾何意義,利用導數(shù)研究曲線上某點切線方程等基礎知識,考查運算求解能力.屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
1
3
ax3+2ax2+x在R上單調(diào)遞增,則實數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知tanα,tanβ是方程x2-x-6=0的兩個根,則tan(α+β)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z=1+ai(a∈R,i是虛數(shù)單位),
z
z
=-
3
5
+
4
5
i,則a=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若1+sin2θ=3sinθcosθ,則tanθ=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項的和為Sn=12n-n2,
(1)求這個數(shù)列的通項公式           
(2)求Sn取最大值時n的值.
(3)設Tn=|a1|+|a2|+|a3|+…+|an|,求Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin2x向左平移
π
6
個單位后,得到函數(shù)y=g(x),下列關于y=g(x)的說法正確的是
 

(1)圖象關于點(-
π
3
,0)中心對稱;   
(2)圖象關于x=-
π
6
軸對稱;
(3)在區(qū)間[-
12
,-
π
6
]單調(diào)遞增
(4)在[-
π
6
,
π
3
]單調(diào)遞減.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如存在實數(shù)x使|x-a|+|x-1|≤3成立,則實數(shù)a的取值范圍是( 。
A、(-2,4)
B、[-2,4]
C、(-2,3)
D、[1,4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設曲線y=x3與直線y=x所圍成的封閉區(qū)域的面積為S,則下列等式成立的是( 。
A、S=
1
-1
(x3-x)dx
B、S=
1
-1
(x-x3)dx
C、S=
1
0
|x3-x|dx
D、S=2
1
0
(x-x3)dx

查看答案和解析>>

同步練習冊答案