精英家教網 > 高中數學 > 題目詳情
如圖,菱形ABCD的對角線AC和BD相交于O點,E,F,G,H分別是AB,BC,CD,DA的中點,求證:E,F,G,H四個點在以O為圓心的同一個圓上.
精英家教網
連接OE,OF,OG,OH.
∵四邊形ABCD為菱形,
∴AB=BC=CD=DA,且BD⊥AC.
∵E、F、GH分別為AB、BC、CD、DA的中點,
∴OE=OF=OG=OH=
1
2
AB,
∴E、F、G、H四點在以O為圓心,
1
2
AB為半徑的圓上.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,菱形ABCD的邊長為1,有∠D=120°,點E、F分別是AD、DC的中點,BE、BF分別與AC交于點M、N.
(1)求AC的值.
(2)求MN的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•西城區(qū)二模)如圖,菱形ABCD的邊長為6,∠BAD=60°,AC∩BD=O.將菱形ABCD沿對角線AC折起,得到三棱錐B-ACD,點M是棱BC的中點,DM=3
2

(Ⅰ)求證:OM∥平面ABD;
(Ⅱ)求證:平面ABC⊥平面MDO;
(Ⅲ)求三棱錐M-ABD的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,菱形ABCD的邊長為4,∠BAD=60°,AC∪BD=O.將菱形ABCD沿對角線AC折起,得到三棱錐B-ACD,點M是棱BC的中點,DM=2
2

(1)求證:OM∥平面ABD;
(2)求證:平面DOM⊥平面ABC;
(3)求三棱錐B-DOM的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,菱形ABCD的邊長為4,∠BAD=60°,AC∩BD=O.將菱形ABCD沿對角線AC折起,得到三棱錐B-ACD,點M是棱BC的中點,DM=2
2

(1)求證:OM∥平面ABD;
(2)求證:平面DOM⊥平面ABC;
(3)求二面角D-AB-O余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,菱形ABCD的邊長為2,∠A=60°,M為DC的中點,若N為菱形內任意一點(含邊界),則
AM
AN
的最大值為
9
9

查看答案和解析>>

同步練習冊答案