10.已知函數(shù)$f(x)=xlnx-\frac{a}{2}{x^2}+1$.
(1)若y=f(x)在(0,+∞)恒單調(diào)遞減,求a的取值范圍;
(2)若函數(shù)y=f(x)有兩個(gè)極值點(diǎn)x1,x2(x1<x2),求a的取值范圍并證明x1+x2>2.

分析 (1)求出函數(shù)的導(dǎo)數(shù),問題轉(zhuǎn)化為$a≥{(\frac{lnx+1}{x})_{max}}x∈(0,+∞)$,令$g(x)=\frac{lnx+1}{x}x∈(0,+∞)$,根據(jù)函數(shù)的單調(diào)性求出g(x)的最大值,從而求出a的范圍即可;
(2)求出函數(shù)f(x)的導(dǎo)數(shù),令F(x)=f'(x)=lnx-ax+1,求出函數(shù)F(x)的導(dǎo)數(shù),通過討論a的范圍求出a的范圍,證明即可.

解答 解:(1)因?yàn)閒'(x)=lnx-ax+1(x>0),
所以由f'(x)≤0在(0,+∞)上恒成立得$a≥{(\frac{lnx+1}{x})_{max}}x∈(0,+∞)$,
令$g(x)=\frac{lnx+1}{x}x∈(0,+∞)$,易知g(x)在(0,1)單調(diào)遞增(1,+∞)單調(diào)遞減,
所以a≥g(1)=1,
即得:a≥1…(5分)
(2)函數(shù)y=f(x)有兩個(gè)極值點(diǎn)x1,x2(x1<x2),
即y=f'(x)有兩個(gè)不同的零點(diǎn),且均為正,f'(x)=lnx-ax+1(x>0),
令F(x)=f'(x)=lnx-ax+1,由$F'(x)=\frac{1}{x}-a=\frac{1-ax}{x}(x>0)$可知
1)a≤0時(shí),函數(shù)y=f(x)在(0,+∞)上是增函數(shù),不可能有兩個(gè)零點(diǎn).
2)a>0時(shí),y=F(x)在$(0,\frac{1}{a})$是增函數(shù)在$(\frac{1}{a},+∞)$是減函數(shù),
此時(shí)$f(\frac{1}{a})$為函數(shù)的極大值,也是最大值.
當(dāng)$F(\frac{1}{a})≤0$時(shí),最多有一個(gè)零點(diǎn),所以$F(\frac{1}{a})=ln\frac{1}{a}>0$才可能有兩個(gè)零點(diǎn),
得:0<a<1…(7分)
此時(shí)又因?yàn)?\frac{1}{e}<\frac{1}{a}<\frac{e^2}{a^2}$,$F(\frac{1}{e})=-\frac{a}{e}<0$,$F(\frac{e^2}{a^2})=3-2lna-\frac{e^2}{a}(0<a<1)$,
令$φ(a)=3-2lna-\frac{e^2}{a},φ'(a)=-\frac{2}{a}+\frac{e^2}{a^2}=\frac{{{e^2}-2a}}{a^2}>0$,φ(a)在(0,1)上單調(diào)遞增,
所以φ(a)<φ(1)=3-e2,即$φ(\frac{e^2}{a^2})<0$
綜上,所以a的取值范圍是(0,1)…(8分)
下面證明x1+x2>2
由于y=F(x)在$(0,\frac{1}{a})$是增函數(shù)在$(\frac{1}{a},+∞)$是減函數(shù),$0<{x_1}<\frac{1}{a}$,可構(gòu)造出$\frac{2}{a}-{x_1}>\frac{1}{a}$
構(gòu)造函數(shù)  $m(x)=F(\frac{2}{a}-x)-F(x)=ln(\frac{2}{a}-x)-a(\frac{2}{a}-x)-(lnx-ax)(0<x≤\frac{1}{a})$
則$m'(x)=\frac{1}{{x-\frac{2}{a}}}-\frac{1}{x}+2a=\frac{{2a{{(x-\frac{1}{a})}^2}}}{{x(x-\frac{2}{a})}}<0$,故m(x)在區(qū)間$(0,\frac{1}{a}]$上單調(diào)減.又由于$0<{x_1}<\frac{1}{a}$,
則$m({x_1})>m(\frac{1}{a})=0$,即有m(x1)>0在$(0,\frac{1}{a})$上恒成立,即有$F(\frac{2}{a}-{x_1})>F({x_1})=F({x_2})$成立.
由于${x_2}>\frac{1}{a}$,$\frac{2}{a}-{x_1}>\frac{1}{a}$,y=F(x)在$(\frac{1}{a},+∞)$是減函數(shù),所以${x_2}>\frac{2}{a}-{x_1}$
所以${x_1}+{x_2}>\frac{2}{a}>2$成立                                          …(12分)

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,轉(zhuǎn)化思想,是一道綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.對(duì)于函數(shù)f(x)=ex-x在區(qū)間[1,2]上的最值,下列描述正確的是( 。
A.最小值為e-1,沒有最大值B.最大值為e2-2,沒有最小值
C.既沒有最大值,也沒有最小值D.最小值為e-1,最大值為e2-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.如圖,A1,A2為橢圓$\frac{x^2}{9}+\frac{y^2}{5}=1$的長(zhǎng)軸的左、右端點(diǎn),O為坐標(biāo)原點(diǎn),S,Q,T為橢圓上不同于A1,A2的三點(diǎn),直線QA1,QA2,OS,OT圍成一個(gè)平行四邊形OPQR,則|OS|2+|OT|2=14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.執(zhí)行如圖所示的程序框圖,輸出的S值為(  )
A.1B.$\sqrt{2015}-1$C.$\sqrt{2016}-1$D.$\sqrt{2017}-1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若函數(shù)$f(x)=\frac{x}{2}+ln\sqrt{x}$在某區(qū)間[a,b]上的值域?yàn)閇ta,tb],則t的取值范圍($\frac{1}{2}$,$\frac{1+e}{2e}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.在三角形ABC中,$sinA=\frac{4}{5},cosB=\frac{5}{13}$,則cosC=( 。
A.$\frac{33}{65}$或$\frac{63}{65}$B.$\frac{63}{65}$C.$\frac{33}{65}$D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.參加成都七中數(shù)學(xué)選修課的同學(xué),對(duì)某公司的一種產(chǎn)品銷量與價(jià)格進(jìn)行了統(tǒng)計(jì),得到如下數(shù)據(jù)和散點(diǎn)圖:

定價(jià)x(元/kg)102030405060
年銷量y(kg)115064342426216586
z=2lny14.112.912.111.110.28.9
(參考數(shù)據(jù):$\sum_{i=1}^6{({x_i}-\overline x)}•({y_i}-\overline y)=-34580$,$\sum_{i=1}^6{({x_i}-\overline x)}•({z_i}-\overline z)=-175.5$$\sum_{i=1}^6{{{({y_i}-\overline y)}^2}}=776840$,$\sum_{i=1}^6{({y_i}-\overline y)}•({z_i}-\overline z)=3465.2$)
(1)根據(jù)散點(diǎn)圖判斷,y與x,z與x哪一對(duì)具有較強(qiáng)的線性相關(guān)性(給出判斷即可,不必說(shuō)明理由)?
(2)根據(jù)(1)的判斷結(jié)果及數(shù)據(jù),建立y關(guān)于x的回歸方程(方程中的系數(shù)均保留兩位有效數(shù)字).
(3)定價(jià)為多少元/kg時(shí),年利潤(rùn)的預(yù)報(bào)值最大?
附:對(duì)于一組數(shù)據(jù)(x1,y1),(x2,y2),(x3,y3),…,(xn,yn),其回歸直線$\widehat{y}$=$\widehat$•x+$\widehat{a}$的斜率和截距的最小二乘估計(jì)分別為:
$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})•({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n•\stackrel{-2}{x}}$,$\widehat{a}$=$\overline{y}$-n•$\widehat$•$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.所給命題:
①菱形的兩條對(duì)角線互相平分的逆命題;
②{x|x2+1=0,x∈R}=∅或{0}=∅;
③對(duì)于命題:“p且q”,若p假q真,則“p且q”為假;
④有兩條邊相等且有一個(gè)內(nèi)角為60°是一個(gè)三角形為等邊三角形的充要條件.
其中為真命題的序號(hào)為③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若關(guān)于x的不等式$\frac{x-a}{x-b}>0$(a,b∈R)的解集為(-∞,1)∪(4,+∞),則a+b=5.

查看答案和解析>>

同步練習(xí)冊(cè)答案