定價x(元/kg) | 10 | 20 | 30 | 40 | 50 | 60 |
年銷量y(kg) | 1150 | 643 | 424 | 262 | 165 | 86 |
z=2lny | 14.1 | 12.9 | 12.1 | 11.1 | 10.2 | 8.9 |
分析 (1)由散點圖可知:z與x具有較強的線性相關(guān)性;
(2)求得樣本中心點($\overline{x}$,$\overline{y}$),則$\widehat$=$\frac{\sum_{i=1}^{6}({x}_{1}-\overline{x})({z}_{i}-\overline{z})}{\sum_{i=1}^{6}({x}_{i}-\overline{x})^{2}}$=$\frac{-175.5}{1750}$≈-0.10,由$\widehat{a}$=$\overline{z}$-$\widehat$•$\overline{x}$=15.05≈15,即可求得線性回歸方程,則;
(3)年利潤L(x)=x•$\widehat{z}$=x•${e}^{\frac{15-0.10x}{2}}$,求導(dǎo),令L′(x)=0,即可求得年利潤L(x)的最大值.
解答 解:(1)由散點圖可知:z與x具有較強的線性相關(guān)性;
(2)由$\overline{x}$=$\frac{10+20+30+40+50+60}{6}$=35,$\overline{z}$=$\frac{14.1+12.9+12.1+11.1+10.2+8.9}{6}$=11.55,
$\widehat$=$\frac{\sum_{i=1}^{6}({x}_{1}-\overline{x})({z}_{i}-\overline{z})}{\sum_{i=1}^{6}({x}_{i}-\overline{x})^{2}}$=$\frac{-175.5}{1750}$≈-0.10,
由$\widehat{a}$=$\overline{z}$-$\widehat$•$\overline{x}$=15.05≈15,
$\widehat{z}$=$\widehat$x+$\widehat{a}$=15-0.10x,
線性回歸方程為:$\widehat{z}$=15-0.10x,則y關(guān)于x的回歸方程$\widehat{y}$=${e}^{\frac{\overline{z}}{2}}$=${e}^{\frac{15-0.10x}{2}}$,
∴y關(guān)于x的回歸方程$\widehat{y}$=${e}^{\frac{\overline{z}}{2}}$=${e}^{\frac{15-0.10x}{2}}$;
(3)年利潤L(x)=x•$\widehat{y}$=x•${e}^{\frac{15-0.10x}{2}}$,
求導(dǎo)L′(x)=${e}^{\frac{15-0.10x}{2}}$•(1-x•$\frac{0.10}{2}$),
令導(dǎo)L′(x)=0,解得:x=20,
由函數(shù)的單調(diào)性可知:當(dāng)x=20時,年利潤的預(yù)報值最大,
∴定價為20元/kg時,年利潤的預(yù)報值最大.
點評 本題考查線性回歸方程的應(yīng)用,考查利用最小二乘法求線性回歸方程,考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)性及最值,考查計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{{4\sqrt{3}}}{5}$ | B. | $-\frac{{3\sqrt{3}}}{5}$ | C. | $\frac{{3\sqrt{3}}}{5}$ | D. | $\frac{{4\sqrt{3}}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{9}{5}$,3] | B. | (-∞,3] | C. | [3,+∞) | D. | (2,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1,2,3,4,5,6} | B. | {1,3,5} | C. | {2,4,6} | D. | ∅ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com