8.(1-$\sqrt{x}$)5(1+$\sqrt{x}$)7的展開(kāi)式中x4的系數(shù)為-5.

分析 由(1-$\sqrt{x}$)5(1+$\sqrt{x}$)7得到(1-x)5(1+2$\sqrt{x}$+x),再求出展開(kāi)式中x4的系數(shù)即可.

解答 解:∵(1-$\sqrt{x}$)5(1+$\sqrt{x}$)7=(1-x)5(1+$\sqrt{x}$)2=(1-x)5(1+2$\sqrt{x}$+x),
∴(1-$\sqrt{x}$)5(1+$\sqrt{x}$)7的展開(kāi)式中x4的系數(shù)為C54(-1)4+C53(-1)3=-5,
故選:-5

點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式展開(kāi)式的通項(xiàng)公式,求展開(kāi)式中某項(xiàng)的系數(shù),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知定點(diǎn)F(0,1),動(dòng)點(diǎn)M(a,-1)(a∈R),線段FM的中垂線l與直線x=a交于點(diǎn)P.
(1)求動(dòng)點(diǎn)P的軌跡Г的方程;
(2)當(dāng)△PFM為正三角形時(shí),過(guò)點(diǎn)P作直線l的垂線,交軌跡Г于P,Q兩點(diǎn),求證:點(diǎn)F在以線段PQ為直徑的圓內(nèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)曲線y=f(x)與曲線y=x2+1(x<0)關(guān)于y=x對(duì)稱,則f(x)的定義域?yàn)椋ā 。?table class="qanwser">A.(0,+∞)B.(1,+∞)C.(-∞,0)D.(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)實(shí)數(shù)x,y滿足約束條件$\left\{{\begin{array}{l}{3x-2y+4≥0}\\{x+y-4≤0}\\{x-ay-2≤0}\end{array}}\right.$,已知z=2x+y的最大值是7,最小值是-26,則實(shí)數(shù)a的值為(  )
A.6B.-6C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.復(fù)數(shù)z滿足$\frac{z}{1-z}$=2i,則|z|2( 。
A.等于z的實(shí)部B.大于z的實(shí)部C.等于z的虛部D.小于z的虛部

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.解釋變量x與預(yù)報(bào)變量y的一組樣本數(shù)據(jù)統(tǒng)計(jì)如表:
 x 2 3 4 5 6 7
 y 73 72 7173 69 68 
(1)根據(jù)表中數(shù)據(jù)作出散點(diǎn)圖,試確定回歸方程;
(2)假定解釋變量為6時(shí),預(yù)報(bào)變量是多少?預(yù)報(bào)變量為70時(shí),解釋變量應(yīng)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.某紡紗廠生產(chǎn)甲、乙兩種棉紗,已知生產(chǎn)甲種棉紗1噸需消耗一級(jí)子棉2噸、二級(jí)子棉1噸;生產(chǎn)乙種棉紗1噸需消耗一級(jí)子棉1噸、二級(jí)子棉2噸,每噸甲種、乙種棉紗的利潤(rùn)分別是900元和600元,工廠在生產(chǎn)中要求消耗一級(jí)子棉不超過(guò)300噸、二級(jí)子棉不超過(guò)270噸,且甲種棉紗的產(chǎn)量不能超過(guò)乙種棉紗的產(chǎn)量60噸.
(Ⅰ)請(qǐng)列出符合題意的不等式組及目標(biāo)函數(shù);
(Ⅱ)甲、乙兩種棉紗應(yīng)各生產(chǎn)多少噸,才能獲得最大利潤(rùn)?并求出最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c且3b=2$\sqrt{3}$c.
(1)若B=2C,求sinB的值;
(2)若c=3,△ABC的面積為3$\sqrt{2}$,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知中心在原點(diǎn)O,焦點(diǎn)在x軸上的橢圓,離心率$e=\frac{{\sqrt{3}}}{2}$,且橢圓過(guò)點(diǎn)$(\sqrt{2},\frac{{\sqrt{2}}}{2})$.
(Ⅰ) 求該橢圓的方程;
(Ⅱ)過(guò)點(diǎn)D(1,$\frac{1}{2}$)的直線(斜率存在)與該橢圓M交于P、Q兩點(diǎn),且|DP|=|DQ|,求此直線的方程;
(Ⅲ)過(guò)點(diǎn)E(1,0)的直線(斜率存在)與該橢圓M交于P、Q兩點(diǎn),且|EP|=2|EQ|,求此直線的方程;
(Ⅳ)設(shè)不過(guò)原點(diǎn)O的直線l與該橢圓交于P、Q兩點(diǎn),滿足直線OP、PQ、OQ的斜率依次成等比數(shù)列,求△OPQ面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案