函數
(1)a=0時,求f(x)最小值;
(2)若f(x)在是單調減函數,求a的取值范圍.
科目:高中數學 來源: 題型:解答題
已知函數為常數,e=2.71828…是自然對數的底數),曲線在點處的切線與x軸平行.
(1)求k的值,并求的單調區(qū)間;
(2)設,其中為的導函數.證明:對任意.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)=ax+x2-xln a(a>0,a≠1).
(1)求函數f(x)在點(0,f(0))處的切線方程;
(2)求函數f(x)的單調增區(qū)間;
(3)若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1(e是自然對數的底數),求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)=x3-4x2+5x-4.
(1)求曲線f(x)在點(2,f(2))處的切線方程;
(2)求經過點A(2,-2)的曲線f(x)的切線方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)=x3+ax2+bx+a2(a,b∈R).
(1)若函數f(x)在x=1處有極值10,求b的值;
(2)若對于任意的a∈[-4,+∞),f(x)在x∈[0,2]上單調遞增,求b的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(14分)(2011•陜西)設f(x)=lnx,g(x)=f(x)+f′(x).
(Ⅰ)求g(x)的單調區(qū)間和最小值;
(Ⅱ)討論g(x)與的大小關系;
(Ⅲ)求a的取值范圍,使得g(a)﹣g(x)<對任意x>0成立.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com