已知函數(shù)
(1)求函數(shù)在上的最大值與最小值;
(2)若時(shí),函數(shù)的圖像恒在直線上方,求實(shí)數(shù)的取值范圍;
(3)證明:當(dāng)時(shí),
(1);(2);(3)證明見解析.
解析試題分析:(1)由知當(dāng)時(shí),,當(dāng)時(shí),,可得函數(shù)的最值.(2)當(dāng)時(shí),函數(shù)的圖象恒直線的上方,等價(jià)于時(shí),不等式恒成立,即恒成立.令,由可得的取值,從而得的取值;(3)由(2)知當(dāng)時(shí),,,則,即,令取1,2…可得不等式,累加可得.
解:(1)定義域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/1e/5/1haq34.png" style="vertical-align:middle;" />,且,
當(dāng)時(shí),,
當(dāng)時(shí),,
在為為減函數(shù);在上為增函數(shù),
.
(2)當(dāng)時(shí),函數(shù)的圖象恒直線的上方,等價(jià)于時(shí),不等式恒成立,即恒成立,令,則當(dāng)時(shí),,故在 上遞增,所以時(shí),,故滿足條件的實(shí)數(shù)取值范圍是.
(3)證明:由(2)知當(dāng)時(shí),
令,則,化簡得
即
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)g(x)="aln" x·f(x)=x3 +x2+bx
(1)若f(x)在區(qū)間[1,2]上不是單調(diào)函數(shù),求實(shí)數(shù)b的范圍;
(2)若對任意x∈[1,e],都有g(shù)(x)≥-x2+(a+2)x恒成立,求實(shí)數(shù)a的取值范圍;
(3)當(dāng)b=0時(shí),設(shè)F(x)=,對任意給定的正實(shí)數(shù)a,曲線y=F(x)上是否存在兩點(diǎn)P,Q,使得△POQ是以O(shè)(O為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,而且此三角形斜邊中點(diǎn)在y軸上?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
學(xué);虬嗉壟e行活動,通常需要張貼海報(bào)進(jìn)行宣傳,F(xiàn)讓你設(shè)計(jì)一張如圖所示的豎向張貼的海報(bào),要求版心面積為128dm2 ,上、下兩邊各空2dm,左、右兩邊各空1dm。如何設(shè)計(jì)海報(bào)的尺寸才能
使四周空白面積最?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知, ,,其中e是無理數(shù)且e="2.71828" ,.
(1)若,求的單調(diào)區(qū)間與極值;
(2)求證:在(1)的條件下,;
(3)是否存在實(shí)數(shù)a,使的最小值是?若存在,求出a的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是二次函數(shù),方程有兩個(gè)相等的實(shí)數(shù)根,且。
(1)求的表達(dá)式;
(2)若直線把的圖象與兩坐標(biāo)軸圍成的圖形面積二等分,求t的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1當(dāng) 時(shí), 與)在定義域上單調(diào)性相反,求的 的最小值。
(2)當(dāng)時(shí),求證:存在,使的三個(gè)不同的實(shí)數(shù)解,且對任意且都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中,且曲線在點(diǎn)處的切線垂直于.
(1)求的值;
(2)求函數(shù)的單調(diào)區(qū)間與極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù)
(1)a=0時(shí),求f(x)最小值;
(2)若f(x)在是單調(diào)減函數(shù),求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com