.設(shè)函數(shù)y=f(x)的定義域?yàn)椋?,+∞),且對(duì)任意的正實(shí)數(shù)x, y,均有
f(xy)=f(x)+f(y)恒成立.已知f(2)=1,且當(dāng)x>1時(shí),f(x)>0。
(1)求f(1), f()的值;
(2)試判斷y=f(x)在(0,+∞)上的單調(diào)性,并加以證明;
(3)一個(gè)各項(xiàng)均為正數(shù)的數(shù)列{a­n}滿(mǎn)足f(Sn)=f(an)+f(an+1)-1,n∈N*,其中Sn是數(shù)列{an}的前n項(xiàng)和,求數(shù)列{an}的通項(xiàng)公式;
(4)在(3)的條件下,是否存在正數(shù)M,使2n·a1·a2…an≥M·.(2a1-1)·(2a2-1)…(2an-1)對(duì)于一切n∈N*均成立?若存在,求出M的范圍;若不存在,請(qǐng)說(shuō)明理由.
(1)f(1)=0f()=-1 (2) 函數(shù)y=f(x)在(0,+∞)上是增函數(shù) 
(3)數(shù)列{an}是首項(xiàng)為1,公差為1的等差數(shù)列,從而有an="n  "
(4)存在  正數(shù)M的范圍是
1)∵f(2×1)="f(2)+f(1)," ∴f(1)=0
又∵f(1)=f(2×)=f(2)+f(),且f(2)=1,∴f()=-1
(2)設(shè)…4分

∴函數(shù)y=f(x)在(0,+∞)上是增函數(shù)
(3)∵f(2)="1," ∴由f(Sn)=f(an)+f(an+1)-1(n∈N*),得f(2Sn)=f[an(an+1)]
∵函數(shù)y=f(x)在(0,+∞)上是增函數(shù),
∴2Sn=an(an+1)

∴數(shù)列{an}是首項(xiàng)為1,公差為1的等差數(shù)列,從而有an=n
(4)∵an=n,故不等式
可化為2n×1×2×3×…×n≥M×1×3×5×…×(2n-1),

是單調(diào)遞增
對(duì)一切n∈N*都成立的正數(shù)M的范圍是
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

)函數(shù)
求證:不等式對(duì)于恒成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列各式中,表示yx的函數(shù)的有()
y=x-(x-3);       ②y=+;
y=  ④y=
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題


(1)當(dāng)每輛車(chē)的月租金定為3600元時(shí),能租出多少輛車(chē)?
(2)當(dāng)每輛車(chē)的月租金為多少元時(shí),租憑公司有月收益最大?最大月收益是多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知正項(xiàng)數(shù)列的前項(xiàng)和,
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)定理:若函數(shù)在區(qū)間D上是凹函數(shù),且存在,則當(dāng)時(shí),總有.請(qǐng)根據(jù)上述定理,且已知函數(shù)上的凹函數(shù),判斷的大;
(Ⅲ)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù),函數(shù)的圖象與的圖象關(guān)于點(diǎn)中心對(duì)稱(chēng)。
(1)求函數(shù)的解析式;
(2)如果,,試求出使成立的取值范圍;
(3)是否存在區(qū)間,使對(duì)于區(qū)間內(nèi)的任意實(shí)數(shù),只要,且時(shí),都有恒成立?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題


 
產(chǎn)品A(件)
產(chǎn)品B(件)
 
研制成本、搭載費(fèi)用之和(萬(wàn)元)
20
30
計(jì)劃最大資金額300萬(wàn)元
產(chǎn)品重量(千克)
10
5
最大搭載重量110千克
預(yù)計(jì)收益(萬(wàn)元)
80
60
 
如何安排這兩種產(chǎn)品的件數(shù)進(jìn)行搭載,才能使總預(yù)計(jì)收益達(dá)到最大,最大收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知是一次函數(shù),且.
(1)求的解析式;
(2)若當(dāng)時(shí),函數(shù)恒成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

時(shí),一次函數(shù)時(shí)的單調(diào)性是怎樣的?利用函數(shù)單調(diào)性的定義證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案