17.已知:在△ABC中,AB=AC,AB⊥AC,D、E在BC上,且∠ADC=∠BAE.
(1)求證:∠DAE=45°;
(2)過B作BF⊥AD于F,交直線AE于M,連CM,判斷BM與CM的位置關(guān)系,加以證明.

分析 (1)先求出∠B=45°,再證明∠DAE=∠B,即可證明:∠DAE=45°;
(2)證明A,C,M,B四點共圓,即可判斷BM⊥CM.

解答 證明:(1)∵AB=AC,AB⊥AC,∴△ABC是等腰直角三角形,
∴∠B=∠C=45°.
∵∠ADC=∠B+∠BAD,∠BAE=∠DAE+∠BAD,
∴∠ADC=∠BAE,
∴∠DAE=∠B=45°;
(2)∵BM⊥AF,∴∠AFM=90°.
∵∠FAM=∠DAE=45°,∴∠AMF=45°=∠ACB,
∴A,C,M,B四點共圓,
∴∠BAC+∠BMC=180°,
∵∠BAC=90°,
∴∠BMC=90°,即BM⊥CM.

點評 本題考查等腰直角三角形,考查四點共圓,考查學生分析解決問題的能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2017屆甘肅會寧縣一中高三上學期9月月考數(shù)學(文)試卷(解析版) 題型:選擇題

設(shè)函數(shù)f(x)=logax(a>0,且a≠1),若f(x1x2…x2 017)=8,則f(x)+f(x)+…+f(x)的值等于( )

A.4 B.8 C.16 D.2loga8

查看答案和解析>>

科目:高中數(shù)學 來源:2017屆安徽六安一中高三上學期月考二數(shù)學(文)試卷(解析版) 題型:填空題

等差數(shù)列中,表示數(shù)列的前項和,且,則

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知過橢圓$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1的下焦點F的直線l的方程為y=-$\sqrt{2}$.
(1)若直線l是頂點在原點的拋物線的準線,求該拋物線的標準方程;
(2)若直線l和橢圓相交所得弦長為2,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖,在正三棱柱ABC-A1B1C1中,AA1=2AB=2a,AE=CF=λAA1(0<λ<1),
(1)試在BC上找一點P,使得A1B∥面PEF;
(2)在(1)的條件下,當λ為何值時,四面體BPFE的體積最大?
(3)在(2)的條件下,求面PEF與底面ABC所成的銳二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.(Ⅰ)求函數(shù)f(x)=8cosx-6cos2x+cos4x在[0,$\frac{π}{3}$)上的最小值;
(Ⅱ)設(shè)x∈(0,$\frac{π}{3}$),證明:$\frac{4}{3}$sinx-$\frac{1}{6}$sin2x<x<$\frac{8}{3}$sinx-sin2x+$\frac{1}{12}$sin4x;
(Ⅲ)設(shè)n為偶數(shù),且n≥6.單位圓內(nèi)接正n邊形面積記為Sn
(1)證明:$\frac{4}{3}$S2n一$\frac{1}{3}$Sn<π<$\frac{8}{3}$S2n一2Sn+$\frac{1}{3}{S_{\frac{n}{2}}}$;
(2)已知1.732<$\sqrt{3}$<1.733,3.105<S24<3.106,證明:3.14<π<3.15.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,AB=AD=4AP,∠BAD=∠PAD=60°,E,F(xiàn)分別是AP,AD的中點.
(Ⅰ)求證:平面BEF⊥平面PAD;
(Ⅱ)求二面角P-BE-F的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.公差不為0的等差數(shù)列{an}的前n項和為Sn,且a1=1,S1,S2,S4成等比數(shù)列
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=$\frac{1}{{S}_{n}}$,證明對任意的n∈N*,b1+b2+b3+…+bn<2恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$ 的上頂點為P,$Q({\frac{4}{3},\frac{3}})$ 是C上的一點,以PQ為直徑的圓經(jīng)過橢圓C的右焦點F.
(1)求橢圓C的方程;
(2)過橢圓C的右焦點F且與坐標不垂直的直線l交橢圓于A,B兩點,在直線x=2上是否存在一點D,使得△ABD為等邊三角形?若存在,求出直線l的斜率;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案