分析 (1)由已知,得S22=S1•S4,利用等差數(shù)列前n項(xiàng)和公式求出首項(xiàng)和公差,由此能求出an.
(2)先根據(jù)等差數(shù)列的求和公式,求出bn,當(dāng)n≥2時(shí),由放縮以及裂項(xiàng)法求和即可求出答案.
解答 解:(1)∵Sn為公差不為0的等差數(shù)列{an}的前n項(xiàng)和,
且a1=1,S1,S2,S4成等比數(shù)列,
∴由已知,得S22=S1•S4,
即a1(4a1+6d)=(2a1+d)2,
整理得2a1d=d2,
又由a1=1,d≠0,解得d=2,
故an=1+(n-1)×2=2n-1.n∈N*.
(2)證明:由(1)知Sn=n+$\frac{n(n-1)}{2}$×2=n2,
∴bn=$\frac{1}{{S}_{n}}$=$\frac{1}{{n}^{2}}$<$\frac{1}{n(n-1)}$=$\frac{1}{n-1}$-$\frac{1}{n}$,n≥2,
∴b1+b2+b3+…+bn<1+$\frac{1}{1}$-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n-1}$-$\frac{1}{n}$=1+1-$\frac{1}{n}$<2.
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式的求法,考查數(shù)列的通項(xiàng)公式的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意裂項(xiàng)求和法的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2017屆甘肅會(huì)寧縣一中高三上學(xué)期9月月考數(shù)學(xué)(理)試卷(解析版) 題型:選擇題
已知,則( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)=2x+$\frac{1}{2}$ | B. | f(x)=-x2+x-$\frac{1}{4}$ | C. | f(x)=1-10x | D. | f(x)=ln(8x-7) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com