如圖,在直三棱柱中,
。M、N分別是AC和BB1的中點。
(1)求二面角的大小。
(2)證明:在AB上存在一個點Q,使得平面⊥平面,   
并求出的長度。
(1);(2)詳見解析

試題分析:(1)有兩種思路,其一是利用幾何體中的垂直關系,以B為坐標原點,所在的直線分別為,軸,軸,軸建立空間直角坐標系,利用平面與平面的法向量的夾角求二面角的大小.其二是按照作出二面角的平面角,并在三角形中求出該角的方法,利用平面平面,在平面內過點,垂足是,過作,垂足為,連結,得二面角的平面角,最后在直角三角形中求
(2)在空間直角坐標系中,設,求出平面的法向量,和平面的法向量
再由確定點的坐標,進而求線段的長度.
方法一(向量法):如圖建立空間直角坐標系                    1分

(1)

設平面的法向量為,平面的法向量為
則有    3分
    5分
設二面角,則 
∴二面角的大小為60°。    6分
(2)設,   ∵
,設平面的法向量為
則有              10分
由(1)可知平面的法向量為,
平面平面
此時,                  12分
方法二:(1)取中點,連接

平面,
平面 ,過,連接
平面 為二面角的平面角      3分


,  ∴

(2)同解法一.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

在如圖所示的幾何體中,平面, 是的中點,
(1)證明:∥平面;
(2)求二面角的大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐中,平面,,且,點上.
(1)求證:;
(2)若二面角的大小為,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐的底面是正方形,側棱底面,過垂直點,作垂直點,平面點,且,.

(1)設點上任一點,試求的最小值;
(2)求證:在以為直徑的圓上;
(3)求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在Z軸上有一點M,使得M到點A(1,0,2)與點B(1,-3,1)的距離相等,則M的坐標為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知點A(1,t,-1)關于x軸的對稱點為B,關于xOy平面的對稱點為C,則BC中點D的坐標為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

直三棱柱ABC-A1B1C1中,∠BCA=90°,M,N分別是A1B1,A1C1的中點,BC=CA=CC1,
則BM與AN所成的角的余弦值為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在空間直角坐標系中,已知.若分別是三棱錐坐標平面上的正投影圖形的面積,則(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)(2011•重慶)如圖,在四面體ABCD中,平面ABC⊥平面ACD,AB⊥BC,AC=AD=2,BC=CD=1

(Ⅰ)求四面體ABCD的體積;
(Ⅱ)求二面角C﹣AB﹣D的平面角的正切值.

查看答案和解析>>

同步練習冊答案