【題目】某學校高三年級有學生1000名,經(jīng)調查研究,其中750名同學經(jīng)常參加體育鍛煉(稱為類同學),另外250名同學不經(jīng)常參加體育鍛煉(稱為類同學),現(xiàn)用分層抽樣方法(按類、類分二層)從該年級的學生中共抽查100名同學.
(1)測得該年級所抽查的100名同學身高(單位:厘米) 頻率分布直方圖如圖,按照統(tǒng)計學原理,根據(jù)頻率分布直方圖計算這100名學生身高數(shù)據(jù)的平均數(shù)和中位數(shù)(單位精確到0.01);
(2)如果以身高達到作為達標的標準,對抽取的100名學生,得到列聯(lián)表:
體育鍛煉與身高達標列聯(lián)表
身高達標 | 身高不達標 | 合計 | |
積極參加體育鍛煉 | 60 | ||
不積極參加體育鍛煉 | 10 | ||
合計 | 100 |
①完成上表;
②請問有多大的把握認為體育鍛煉與身高達標有關系?
參考公式:.
參考數(shù)據(jù):
0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)174,174.55;(2)①列聯(lián)表見解析;②.
【解析】
(1)根據(jù)頻率分布直方圖的平均數(shù)與中位數(shù)的公式即可求解;
(2)①根據(jù)頻率分布直方圖求出身高達標與不達標的比例,結合積極參加體育鍛煉和不積極參加體育鍛煉的比例,完成表格;②根據(jù)公式計算出即可下結論.
(1)平均數(shù),
前兩組頻率之和為0.25,前三組頻率之和為0.8,所以中位數(shù)在第三組
中位數(shù)為.
(2)根據(jù)頻率分布直方圖可得身高不達標所占頻率為0.25,達標所占頻率為0.75,
所以身高不達標25人,達標75人,
根據(jù)分層抽樣抽取的積極參加體育鍛煉75人,不積極參加體育鍛煉的25人,
所以表格為:
身高達標 | 身高不達標 | 合計 | |
積極參加體育鍛煉 | 60 | 15 | 75 |
不積極參加體育鍛煉 | 15 | 10 | 25 |
合計 | 75 | 25 | 100 |
假設體育鍛煉與身高達標沒有關系
.
所以有把握認為體育鍛煉與身高達標有關系.
科目:高中數(shù)學 來源: 題型:
【題目】某校高三年級有男生105人,女生126人,教師42人,用分層抽樣的方法從中抽取13人進行問卷調查.設其中某項問題的選擇只有“同意”,“不同意”兩種,且每人都做了一種選擇.下面表格中提供了被調查人答卷情況的部分信息.
同意 | 不同意 | 合計 | |
教師 | 1 | ||
女生 | 4 | ||
男生 | 2 |
(1)請完成此統(tǒng)計表;
(2)試估計高三年級學生“同意”的人數(shù);
(3)從被調查的女生中選取2人進行訪談,求選到的兩名學生中,恰有一人“同意”、一人“不同意”的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和Sn.
(1)求數(shù)列{an}的通項公式;
(2)若=2(an+an+1﹣1),求數(shù)列{ }的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分,(1)小問7分,(2)小問5分)
設函數(shù)
(1)若在處取得極值,確定的值,并求此時曲線在點處的切線方程;
(2)若在上為減函數(shù),求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線y=2x-2與拋物線x2=2py(p>0)交于M1,M2兩點,且|M1M2|=8.
(1)求p的值;
(2)設A是直線y=上一點,直線AM2交拋物線于另一點M3,直線M1M3交直線y=于點B,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】己知函數(shù)在處的切線方程為,函數(shù).
(1)求函數(shù)的解析式;
(2)求函數(shù)的極值;
(3)設(表示,中的最小值),若在上恰有三個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(I)當a=2時,求曲線在點處的切線方程;
(II)設函數(shù),z.x.x.k討論的單調性并判斷有無極值,有極值時求出極值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知圓心在原點的圓C與直線l1:相切,動直線交圓C于A,B兩點,交y軸于點M.
(1)求圓C的方程;
(2)求實數(shù)k、m的關系;
(3)若點M關于O的對稱點為N,圓N的半徑為.設D為AB的中點,DE,DF與圓N分別相切于點E,F,求的最小值及取最小值時m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市為了解本市1萬名小學生的普通話水平,在全市范圍內進行了普通話測試,測試后對每個小學生的普通話測試成績進行統(tǒng)計,發(fā)現(xiàn)總體(這1萬名小學生普通話測試成績)服從正態(tài)分布.
(1)從這1萬名小學生中任意抽取1名小學生,求這名小學生的普通話測試成績在內的概率;
(2)現(xiàn)在從總體中隨機抽取12名小學生的普通話測試成績,對應的數(shù)據(jù)如下:50,52,56,62,63,68,65,64,72,80,67,90.從這12個數(shù)據(jù)中隨機選取4個,記表示大于總體平均分的個數(shù),求的方差.
參考數(shù)據(jù):若,則,,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com