【題目】某學校高三年級有學生1000名,經(jīng)調查研究,其中750名同學經(jīng)常參加體育鍛煉(稱為類同學),另外250名同學不經(jīng)常參加體育鍛煉(稱為類同學),現(xiàn)用分層抽樣方法(按類、類分二層)從該年級的學生中共抽查100名同學.

1)測得該年級所抽查的100名同學身高(單位:厘米) 頻率分布直方圖如圖,按照統(tǒng)計學原理,根據(jù)頻率分布直方圖計算這100名學生身高數(shù)據(jù)的平均數(shù)和中位數(shù)(單位精確到0.01);

2)如果以身高達到作為達標的標準,對抽取的100名學生,得到列聯(lián)表:

體育鍛煉與身高達標列聯(lián)表

身高達標

身高不達標

合計

積極參加體育鍛煉

60

不積極參加體育鍛煉

10

合計

100

①完成上表;

②請問有多大的把握認為體育鍛煉與身高達標有關系?

參考公式:.

參考數(shù)據(jù):

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】1174,174.55;(2)①列聯(lián)表見解析;②.

【解析】

1)根據(jù)頻率分布直方圖的平均數(shù)與中位數(shù)的公式即可求解;

2)①根據(jù)頻率分布直方圖求出身高達標與不達標的比例,結合積極參加體育鍛煉和不積極參加體育鍛煉的比例,完成表格;②根據(jù)公式計算出即可下結論.

1)平均數(shù),

前兩組頻率之和為0.25,前三組頻率之和為0.8,所以中位數(shù)在第三組

中位數(shù)為.

2)根據(jù)頻率分布直方圖可得身高不達標所占頻率為0.25,達標所占頻率為0.75

所以身高不達標25人,達標75人,

根據(jù)分層抽樣抽取的積極參加體育鍛煉75人,不積極參加體育鍛煉的25人,

所以表格為:

身高達標

身高不達標

合計

積極參加體育鍛煉

60

15

75

不積極參加體育鍛煉

15

10

25

合計

75

25

100

假設體育鍛煉與身高達標沒有關系

.

所以有把握認為體育鍛煉與身高達標有關系.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某校高三年級有男生105人,女生126人,教師42人,用分層抽樣的方法從中抽取13人進行問卷調查.設其中某項問題的選擇只有同意不同意兩種,且每人都做了一種選擇.下面表格中提供了被調查人答卷情況的部分信息.

同意

不同意

合計

教師

1

女生

4

男生

2

(1)請完成此統(tǒng)計表;

(2)試估計高三年級學生同意的人數(shù);

(3)從被調查的女生中選取2人進行訪談,求選到的兩名學生中,恰有一人同意、一人不同意的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和Sn

1)求數(shù)列{an}的通項公式;

2)若2an+an+11),求數(shù)列{ }的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】本小題滿分12分,1小問7分,2小問5分

設函數(shù)

1處取得極值,確定的值,并求此時曲線在點處的切線方程;

2上為減函數(shù),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線y=2x-2與拋物線x2=2py(p>0)交于M1,M2兩點,且|M1M2|=8.

1)求p的值;

2)設A是直線y=上一點,直線AM2交拋物線于另一點M3,直線M1M3交直線y=于點B,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】己知函數(shù)處的切線方程為,函數(shù).

(1)求函數(shù)的解析式;

(2)求函數(shù)的極值;

(3)設表示,中的最小值),若上恰有三個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(I)當a=2時,求曲線在點處的切線方程;

(II)設函數(shù),z.x.x.k討論的單調性并判斷有無極值,有極值時求出極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知圓心在原點的圓C與直線l1:相切,動直線交圓CA,B兩點,交y軸于點M.

1)求圓C的方程;

2)求實數(shù)km的關系;

3)若點M關于O的對稱點為N,圓N的半徑為.DAB的中點,DEDF與圓N分別相切于點E,F,求的最小值及取最小值時m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市為了解本市1萬名小學生的普通話水平,在全市范圍內進行了普通話測試,測試后對每個小學生的普通話測試成績進行統(tǒng)計,發(fā)現(xiàn)總體(這1萬名小學生普通話測試成績)服從正態(tài)分布.

(1)從這1萬名小學生中任意抽取1名小學生,求這名小學生的普通話測試成績在內的概率;

(2)現(xiàn)在從總體中隨機抽取12名小學生的普通話測試成績,對應的數(shù)據(jù)如下:50,52,56,62,63,68,65,64,72,80,67,90.從這12個數(shù)據(jù)中隨機選取4個,記表示大于總體平均分的個數(shù),求的方差.

參考數(shù)據(jù):若,則,.

查看答案和解析>>

同步練習冊答案