【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 滿足Sn=﹣n2+7n(n∈N*).則數(shù)列{an}的通項(xiàng)公式是an= .
【答案】﹣2n+8
【解析】解:因?yàn)镾n=﹣n2+7n,①所以Sn﹣1=﹣(n﹣1)2+7(n﹣1),n>1②.
①﹣②得到an=﹣2n+8(n>1).
n=1時(shí),S1=6滿足an=﹣2n+8;
所以數(shù)列{an}的通項(xiàng)公式是an=﹣2n+8(n∈N*).
所以答案是:﹣2n+8.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解數(shù)列的通項(xiàng)公式的相關(guān)知識(shí),掌握如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】等差數(shù)列{an}的前n項(xiàng)和為Sn , 若S2=2,S4=10,則S6等于( )
A.12
B.18
C.24
D.42
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知全集U={x|x2>1},集合 A={x|x2﹣4x+3<0},則UA=( )
A.(1,3)
B.(﹣∞,1)∪[3,+∞)
C.(﹣∞,﹣1)∪[3,+∞)
D.(﹣∞,﹣1)∪(3,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)為定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=2x+2x+b(b為常數(shù)),則f(﹣1)=( )
A.3
B.1
C.﹣1
D.﹣3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】0.32 , log20.3,20.3這三個(gè)數(shù)之間的大小順序是( )
A.0.32<20.3<log20.3
B.0.32<log20.3<20.3
C.log20.3<0.32<20.3
D.log20.3<20.3<0.32
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合U={1,2,3,4,5},A={1,2,3},B={2,5},則A∩(UB)=( )
A.{2}
B.{2,3}
C.{3}
D.{1,3}
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題p:所有有理數(shù)都是實(shí)數(shù),命題q:正數(shù)的對(duì)數(shù)都是負(fù)數(shù),則下列命題中為真命題的是( )
A.(¬p)∨q
B.p∧q
C.(¬p)∧(¬q)
D.(¬p)∨(¬q)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)全集I={0,1,2,3,4},集合A={0,1,2,3},集合B={2,3,4},則IA∪IB=( )
A.{0}
B.{0,1}
C.{0,1,4}
D.{0,1,2,3,4}
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},則(UA)∪B為( 。
A.{1,2,4}
B.{2,3,4}
C.{0,2,3,4}
D.{0,2,4}
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com