A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{{\sqrt{6}}}{3}$ |
分析 建立空間直角坐標(biāo)系,設(shè)MN是直線A1C1與AB1的公垂線,求出向量的坐標(biāo),即可得出結(jié)論.
解答 解:如圖,建立空間直角坐標(biāo)系,A(1,0,0),A1(1,0,1),B1(1,1,1),C1(0,1,1),
∴$\overrightarrow{A{B}_{1}}$=(0,1,1),$\overrightarrow{{A}_{1}{C}_{1}}$=(-1,1,0),$\overrightarrow{{A}_{1}A}$=(0,0,-1).
設(shè)MN是直線A1C1與AB1的公垂線,且$\overrightarrow{AN}$=λ$\overrightarrow{A{B}_{1}}$=(1,λ,λ),$\overrightarrow{{A}_{1}M}$=μ$\overrightarrow{{A}_{1}{C}_{1}}$=(-μ,μ,0),
則$\overrightarrow{MN}$=-(-μ,μ,0)+(0,0,-1)+(0,λ,λ)=(μ,λ-μ,λ-1).
從而有$\left\{\begin{array}{l}{λ-2μ=0}\\{2λ-μ=1}\end{array}\right.$,∴λ=$\frac{2}{3}$,μ=$\frac{1}{3}$.
∴$\overrightarrow{MN}$=($\frac{1}{3},\frac{1}{3},-\frac{1}{3}$)
∴$|\overrightarrow{MN}|$=$\frac{\sqrt{3}}{3}$.
故選:C.
點(diǎn)評 本題考查空間距離的計(jì)算,考查向量知識(shí)的運(yùn)用,正確運(yùn)用向量是關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
甲 | 6 | 7 | 9 | 12 | 22 | 20 | 15 | 14 |
乙 | 8 | 9 | 11 | 21 | 22 | 19 | 15 | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 25° | B. | 65° | C. | 115° | D. | 155° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{3}+1}}{2}$ | D. | $\sqrt{3}+1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}π{R^2}$ | B. | $\frac{1}{2}π{R^2}$ | C. | πR2 | D. | 2πR2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com