19.若函數(shù)y=2-cosx,則當(dāng)x=2kπ+π,k∈Z時,最大值為3;當(dāng)x=2kπ,k∈Z時,最小值為1.

分析 根據(jù)余弦函數(shù)的性質(zhì)求出函數(shù)的最小值和最大值即可.

解答 解:y=2-cosx,x=2kπ+π,k∈Z時,y取最大值3,
x=2kπ,k∈Z時,y取最小值1,
故答案為:2kπ+π,3,2kπ,1(k∈Z)

點(diǎn)評 本題考查了余弦函數(shù)的性質(zhì),考查函數(shù)的最值問題,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.?dāng)?shù)列1$\frac{1}{2}$,4$\frac{1}{4}$,9$\frac{1}{8}$,16$\frac{1}{16}$…,前n項(xiàng)之和為( 。
A.$\frac{{n}^{3}}{3}+\frac{{n}^{2}}{2}+\frac{n}{6}+1+\frac{1}{{2}^{n}}$B.$\frac{{n}^{3}}{3}+\frac{{n}^{2}}{2}+\frac{n}{6}+1$-$\frac{1}{{2}^{n}}$
C.$\frac{{n}^{3}}{3}+\frac{{n}^{2}}{2}+\frac{n}{6}+1$+$\frac{1}{{2}^{n-1}}$D.$\frac{{n}^{3}}{3}+\frac{{n}^{2}}{2}+\frac{n}{6}+1$-$\frac{1}{{2}^{n-1}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在樣本方差的計(jì)算公式S2=$\frac{1}{20}$[(x1-40)2+(x2-40)2+…+(x20-40)2]中,數(shù)字20,40分別表示樣本的( 。
A.容量,方差B.容量,平均數(shù)C.平均數(shù),容量D.標(biāo)準(zhǔn)差,平均數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足:a1=3,$\frac{{a}_{n+1}+{a}_{n}}{n+1}$=$\frac{8}{{a}_{n+1}-{a}_{n}}$(n∈N*),設(shè)bn=$\frac{1}{{a}_{n}}$,Sn=b12+b22+…+bn2
(1)求數(shù)列{an}通項(xiàng)公式;
(2)求證:Sn$<\frac{1}{4}$;
(3)若數(shù)列{cn}滿足cn=3n+(-1)n-1•2n•λ(λ為非零常數(shù)),確定λ的取值范圍,使n∈N*時,都有cn+1>cn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知二次函數(shù)y=ax2+bx+c的圖象與x軸交于A(-2,0),B(4,0)兩點(diǎn),且函數(shù)的最大值為9,則該二次函數(shù)的表達(dá)式為( 。
A.f(x)=-x2-2x+12B.f(x)=x2-2x+10C.f(x)=-x2+2x+8D.f(x)=x2+2x+6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=ax-xlna(a>l),g(x)=b-$\frac{3{x}^{2}}{2}$,e為自然對數(shù)的底數(shù).
(1)當(dāng)a=e,b=5時,求方程f(x)=g(x)的解的個數(shù);
(2)若存在x1,x2∈[-l,1]使得f(x1)+g(x2)+$\frac{1}{2}$≥f(x2)=g(x1)+e成立,求實(shí)數(shù)a的取值范圍.[注:(ax)′=axlna].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在△ABC中,角A,B,C的對邊分別為a,b,c,有如下命題:
①若sin2A=sin2B,則△ABC為等腰三角形;
②若a=2,b=5,A=$\frac{π}{6}$,則△ABC有兩組解;
③定義在R上的奇函數(shù)f(x)滿足f(x+2)=-f(x),f(x)在[-5,-4]上為增函數(shù),若A>B,則f(sinA)>f(sinB).
其中正確命題的序號是③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知O為△ABC的外心,3$\overrightarrow{OA}$+5$\overrightarrow{OB}$+7$\overrightarrow{OC}$=$\overrightarrow{0}$,則∠ACB的值為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{6}$或$\frac{5π}{6}$D.$\frac{π}{3}$或$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.中石化集團(tuán)通過與安哥拉國家石油公司合作,獲得了安哥拉深海油田區(qū)塊的開采權(quán),集團(tuán)在某些區(qū)塊隨機(jī)初步勘探了部分口井,取得了地質(zhì)資料.進(jìn)入全面勘探時期后,集團(tuán)按網(wǎng)絡(luò)點(diǎn)來布置井位進(jìn)行全面勘探.由于勘探一口井的費(fèi)用很高,如果新設(shè)計(jì)的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井.以節(jié)約勘探費(fèi)用.勘探初期數(shù)據(jù)資料見如表:
井號I123456
坐標(biāo)(x,y)(km)(2,30)(4,30)(5,60)(6,50)(8,70)(1,y)
鉆井深度(km)2456810
出油量(L)407011090160205
(I)1~6號舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為y=6.5x+a,求a,并估計(jì)y的預(yù)報(bào)值;
(II)現(xiàn)準(zhǔn)備勘探新井7(1,25),若通過1、3、5、7號井計(jì)算出的$\stackrel{∧}$,$\stackrel{∧}{a}$的值與(I)中b,a的值差不超過10%,則使用位置最接近的已有舊井6(1,y),否則在新位置打開,請判斷可否使用舊井?
($\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$,$\sum_{i=1}^{4}$x2i-12=94,$\sum_{i=1}^{4}$x2i-1y2i-1=945)
(III)設(shè)出油量與勘探深度的比值k不低于20的勘探并稱為優(yōu)質(zhì)井,那么在原有的出油量不低于50L的井中任意勘察3口井,求恰有2口是優(yōu)質(zhì)井的概率.

查看答案和解析>>

同步練習(xí)冊答案