【題目】如圖所示,在長(zhǎng)方體中,,點(diǎn)E是棱上的一個(gè)動(dòng)點(diǎn),若平面交棱于點(diǎn),給出下列命題:
①四棱錐的體積恒為定值;
②存在點(diǎn),使得平面;
③對(duì)于棱上任意一點(diǎn),在棱上均有相應(yīng)的點(diǎn),使得平面;
④存在唯一的點(diǎn),使得截面四邊形的周長(zhǎng)取得最小值.
其中真命題的是____________.(填寫(xiě)所有正確答案的序號(hào))
【答案】①②④
【解析】
對(duì)①,將四棱錐分成兩部分與分析即可
對(duì)②,根據(jù)線(xiàn)面垂直的判定,注意用到再利用線(xiàn)面垂直與線(xiàn)線(xiàn)垂直的判定即可.
對(duì)③,舉出反例即可.
對(duì)④,四邊形的周長(zhǎng),展開(kāi)長(zhǎng)方體分析最值即可.
對(duì)①,,又三棱錐底面
不變,且因?yàn)?/span>∥底面,故到底面的距離即上的高長(zhǎng)度不變.故三棱錐體積一定,即四棱錐的體積恒為定值,①正確.
對(duì)②,因?yàn)?/span>,且長(zhǎng)方體,故四邊形為正方形,
故.要平面則只需,又,故只需面.
又平面,故只需即可.因?yàn)?/span>,故當(dāng) 時(shí)存在點(diǎn),使得,即平面.故②正確.
對(duì)③,當(dāng)在時(shí)總有與平面相交,故③錯(cuò)誤.
對(duì)④,四邊形的周長(zhǎng),分析即可.
將矩形沿著展開(kāi)使得在延長(zhǎng)線(xiàn)上時(shí),此時(shí)的位置設(shè)為,則線(xiàn)段與的交點(diǎn)即為使得截面四邊形的周長(zhǎng)取得最小值時(shí)的唯一點(diǎn).故④正確.
故答案為:①②④
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,右焦點(diǎn)為,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線(xiàn)相切.
(1)求橢圓的方程;
(2)如圖,過(guò)定點(diǎn)的直線(xiàn)交橢圓于兩點(diǎn),連接并延長(zhǎng)交于,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
對(duì)于各項(xiàng)均為整數(shù)的數(shù)列,如果(=1,2,3,…)為完全平方數(shù),則稱(chēng)數(shù)
列具有“性質(zhì)”.
不論數(shù)列是否具有“性質(zhì)”,如果存在與不是同一數(shù)列的,且同
時(shí)滿(mǎn)足下面兩個(gè)條件:①是的一個(gè)排列;②數(shù)列具有“性質(zhì)”,則稱(chēng)數(shù)列具有“變換性質(zhì)”.
(I)設(shè)數(shù)列的前項(xiàng)和,證明數(shù)列具有“性質(zhì)”;
(II)試判斷數(shù)列1,2,3,4,5和數(shù)列1,2,3,…,11是否具有“變換性質(zhì)”,具有此性質(zhì)的數(shù)列請(qǐng)寫(xiě)出相應(yīng)的數(shù)列,不具此性質(zhì)的說(shuō)明理由;
(III)對(duì)于有限項(xiàng)數(shù)列:1,2,3,…,,某人已經(jīng)驗(yàn)證當(dāng)時(shí),
數(shù)列具有“變換性質(zhì)”,試證明:當(dāng)”時(shí),數(shù)列也具有“變換性質(zhì)”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】本相同的資料書(shū)配給三個(gè)班級(jí),要求每班至少一本且至多六本,則不同的分配方法共有_____種.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖象恰好經(jīng)過(guò)三個(gè)象限,則實(shí)數(shù)的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用0,1,2,3,4,5這六個(gè)數(shù)字組成無(wú)重復(fù)數(shù)字的四位數(shù).
(1)在組成的四位數(shù)中,求所有偶數(shù)的個(gè)數(shù);
(2)在組成的四位數(shù)中,求比2430大的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 : ( )的離心率 ,直線(xiàn) 被以橢圓 的短軸為直徑的圓截得的弦長(zhǎng)為 .
(1)求橢圓 的方程;
(2)過(guò)點(diǎn) 的直線(xiàn) 交橢圓于 , 兩個(gè)不同的點(diǎn),且 ,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線(xiàn)過(guò)點(diǎn),其參數(shù)方程為(為參數(shù), ),以為極點(diǎn), 軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.
(1)求曲線(xiàn)的普通方程和曲線(xiàn)的直角坐標(biāo)方程;
(2)求已知曲線(xiàn)和曲線(xiàn)交于兩點(diǎn),且,求實(shí)數(shù)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com