【題目】已知拋物線,過點(diǎn)的直線,兩點(diǎn),且滿足以線段為直徑的圓,圓心為,且過坐標(biāo)原點(diǎn).

1)求拋物線的方程;

2)若圓過點(diǎn),求直線的方程和圓的方程.

【答案】12)當(dāng)時(shí),,當(dāng)時(shí),

【解析】

1)依題意得,直線過點(diǎn),可設(shè),與拋物線聯(lián)立,寫出韋達(dá)定理,再根據(jù)圓的性質(zhì)得出,代數(shù)化簡求出,即可得出拋物線的方程;

2)因?yàn)閳A的直徑為,且過點(diǎn),由圓的性質(zhì)得出,結(jié)合(1)中的韋達(dá)定理,代數(shù)化簡求得的值,因此得出直線的方程和圓的方程.

1)設(shè),,

聯(lián)立方程有,

,

又以線段為直徑的圓,圓心為,且過坐標(biāo)原點(diǎn),

,,有,即拋物線的方程為.

2)由(1)可得,,

由圓過點(diǎn),可得

,

故(1)可得,,可得,

解得或者

當(dāng)時(shí),,

當(dāng)時(shí),,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱柱中,,,,,,分別為棱的中點(diǎn)

1)求證:

2)求直線所成的角

3)若為線段的中點(diǎn),在平面內(nèi)的射影為,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以直角坐標(biāo)系xOy的原點(diǎn)為極坐標(biāo)系的極點(diǎn),x軸的正半軸為極軸.已知曲線的極坐標(biāo)方程為,P上一動點(diǎn),Q的軌跡為.

1)求曲線的極坐標(biāo)方程,并化為直角坐標(biāo)方程,

2)若點(diǎn),直線l的參數(shù)方程為t為參數(shù)),直線l與曲線的交點(diǎn)為A,B,當(dāng)取最小值時(shí),求直線l的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,記棱長為1的正方體,以各個面的中心為頂點(diǎn)的正八面體為,以各面的中心為頂點(diǎn)的正方體為,以各個面的中心為頂點(diǎn)的正八面體為,……,以此類推得一系列的多面體,設(shè)的棱長為,則數(shù)列的各項(xiàng)和為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動圓過定點(diǎn),且在y軸上截得的弦MN的長為8

1)求動圓圓心的軌跡C的方程;

2)已知點(diǎn),長為的線段PQ的兩端點(diǎn)在軌跡C上滑動.當(dāng)軸是的角平分線時(shí),求直線PQ的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線與曲線,(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

1)寫出曲線,的極坐標(biāo)方程;

2)在極坐標(biāo)系中,已知,的公共點(diǎn)分別為,,當(dāng)時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線與橢圓相交于兩點(diǎn),其中在第一象限,是橢圓上一點(diǎn).

1)記、是橢圓的左右焦點(diǎn),若直線,當(dāng)的距離與到直線的距離相等時(shí),求點(diǎn)的橫坐標(biāo);

2)若點(diǎn)關(guān)于軸對稱,當(dāng)的面積最大時(shí),求直線的方程;

3)設(shè)直線軸分別交于,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C的參數(shù)方程為t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,過極點(diǎn)的兩射線、相互垂直,與曲線C分別相交于AB兩點(diǎn)(不同于點(diǎn)O),且的傾斜角為銳角.

(1)求曲線C和射線的極坐標(biāo)方程;

(2)求△OAB的面積的最小值,并求此時(shí)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)的圖象在處取得極值4.

1)求函數(shù)的單調(diào)區(qū)間;

2)對于函數(shù),若存在兩個不等正數(shù),,當(dāng)時(shí),函數(shù)的值域是,則把區(qū)間叫函數(shù)的“正保值區(qū)間”.問函數(shù)是否存在“正保值區(qū)間”,若存在,求出所有的“正保值區(qū)間”;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案