已知橢圓
的左、右焦點(diǎn)分別為
,若橢圓上存在點(diǎn)
(異于長軸的端點(diǎn)),使得
,則該橢圓離心率的取值范圍是
.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
已知點(diǎn)
為圓
上的動(dòng)點(diǎn),且
不在
軸上,
軸,垂足為
,線段
中點(diǎn)
的軌跡為曲線
,過定點(diǎn)
任作一條與
軸不垂直的直線
,它與曲線
交于
、
兩點(diǎn)。
(I)求曲線
的方程;
(II)試證明:在
軸上存在定點(diǎn)
,使得
總能被
軸平分
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分15分)設(shè)橢圓
的離心率
右焦點(diǎn)到直線
的距離
,
為坐標(biāo)原點(diǎn)。
(Ⅰ)求橢圓
的方程;
(Ⅱ)過點(diǎn)
作兩條互相垂直的射線,與橢圓
分別交于
兩點(diǎn),證明點(diǎn)
到直線
的距離為定值,并求弦
長度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)已知橢圓
以
為焦點(diǎn),且離心率
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)過
點(diǎn)斜率為
的直線
與橢圓
有兩個(gè)不同交點(diǎn)
,求
的范圍。
(Ⅲ)設(shè)橢圓
與
軸正半軸、
軸正半軸的交點(diǎn)分別為
,是否存在直線
,滿足(Ⅱ)中的條件且使得向量
與
垂直?如果存在,寫出
的方程;如果不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知橢圓
的長軸兩端點(diǎn)為
,若橢圓
上存在點(diǎn)
,使得
,求橢圓
的離心率
的取值范圍____________;
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知橢圓
+
=1(a>b>c>0,a
2=b
2+c
2)的左右焦點(diǎn)分別為F
1,F(xiàn)
2,若以F
2為圓心,b―c為半徑作圓F
2,過橢圓上一點(diǎn)P作此圓的切線,切點(diǎn)為T,且|PT|的最小值為
(a―c),則橢圓的離心率e的取值范圍是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知命題
“橢圓
的焦點(diǎn)在
軸上”;
命題
在
上單調(diào)遞增,若“
”為假,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
如圖,點(diǎn)
是雙曲線
上的動(dòng)點(diǎn),
是雙曲線的焦點(diǎn),
是
的平分線上一點(diǎn),且
.某同學(xué)用以下方法研究
:延長
交
于點(diǎn)
,可知
為等腰三角形,且
為
的中點(diǎn),得
.類似地:點(diǎn)
是橢圓
上的動(dòng)點(diǎn),
是橢圓的焦點(diǎn),
是
的平分線上一點(diǎn),且
,則
的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
的離心率為
,橢圓上的點(diǎn)到右焦點(diǎn)F的最近距離為2,若橢圓C與x軸交于A、B兩點(diǎn),M是橢圓C上異于A、B的任意一點(diǎn),直線MA交直線
于G點(diǎn),直線MB交直線
于H點(diǎn)。
(1)求橢圓C的方程;
(2)試探求以GH為直徑的圓是否恒經(jīng)過x軸上的定點(diǎn)?若經(jīng)過,求出定點(diǎn)的坐標(biāo);若不經(jīng)過,請(qǐng)說明理由。
查看答案和解析>>