如圖,在多面體ABCDEF中,底面ABCD是邊長(zhǎng)為2的菱形,,四邊形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,H是CF的中點(diǎn).
(Ⅰ)求證:AC⊥平面BDEF;
(Ⅱ)求直線DH與平面所成角的正弦值;
(Ⅲ)求二面角的大小.
(Ⅰ)答案詳見(jiàn)解析;(Ⅱ);(Ⅲ).
解析試題分析:(Ⅰ)要證明平面,只需證明垂直于面內(nèi)的兩條相交相交直線,由是菱形,故,再證明,從而可證明平面;(Ⅱ)由已知,選三條兩兩垂直的直線分別為x軸,y軸,z軸,建立空間直角坐標(biāo)系,表示相關(guān)點(diǎn)的坐標(biāo),求直線的方向向量坐標(biāo),以及面法向量的坐標(biāo),設(shè)直線與平面所成角為,則;(Ⅲ)先求二面角兩個(gè)半平面的法向量,再求法向量的夾角,通過(guò)觀察二面角是銳二面角還是鈍二面角,決定二面角余弦值的正負(fù),該題中面的法向量就是,只需求面
的法向量即可.
試題解析:(Ⅰ)證明:因?yàn)樗倪呅?img src="http://thumb.zyjl.cn/pic5/tikupic/3b/0/130ls4.png" style="vertical-align:middle;" />是菱形,所以 .
因?yàn)槠矫?img src="http://thumb.zyjl.cn/pic5/tikupic/4c/4/qnmnd.png" style="vertical-align:middle;" />平面,且四邊形是矩形,所以平面,
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b2/6/csa0b2.png" style="vertical-align:middle;" />平面,所以 . 因?yàn)?,所以 平面.
(Ⅱ)解:設(shè),取的中點(diǎn),連接,因?yàn)樗倪呅?img src="http://thumb.zyjl.cn/pic5/tikupic/4a/a/1gcyv2.png" style="vertical-align:middle;" />是矩形,分別為的中點(diǎn),所以 ,又因?yàn)?平面,所以 平面,由,得兩兩垂直.所以以為原點(diǎn),所在直線分別為x軸,y軸,z軸,如圖建立空間直角坐標(biāo)系.因?yàn)榈酌?img src="http://thumb.zyjl.cn/pic5/tikupic/3b/0/130ls4.png" style="vertical-align:middle;" />是邊長(zhǎng)為2的菱形,,,
所以 ,,,,,,.
因?yàn)?平面, 所以平面的法向量. 設(shè)直線與平面所成角為,由, 得 ,所以直線與平面所成角的正弦值為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在正三棱柱ABC—A1B1C1中,.
(1)求直線與平面所成角的正弦值;
(2)在線段上是否存在點(diǎn)?使得二面角的大小為60°,若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,是圓的直徑,垂直圓所在的平面,是圓上的點(diǎn).
(1)求證:平面;
(2)設(shè)為的中點(diǎn),為的重心,求證://平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐P-ABCD中,四邊形ABCD是矩形,平面PCD⊥平面ABCD,M為PC中點(diǎn).求證:
(1)PA∥平面MDB;
(2)PD⊥BC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四邊形是正方形,平面,,,,,分別為,,的中點(diǎn).
(1)求證:平面;
(2)求平面與平面所成銳二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,,,DC=1,AB=2,PA⊥平面ABCD,PA=1.
(1)求證:AB∥平面PCD;
(2)求證:BC⊥平面PAC;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,長(zhǎng)方體中,,點(diǎn)為的中點(diǎn).
(1)求證:直線平面;
(2)求證:平面平面;
(3)求與平面所成的角大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在三棱錐中,,,為的中點(diǎn),為的中點(diǎn),且為正三角形.
(1)求證:平面;
(2)若,,求點(diǎn)到平面的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com