已知f(x)=x3+x(x∈R),
(1)判斷f(x)在(-∞,+∞)上的單調(diào)性,并證明;
(2)求證:滿足f(x)=a(a為常數(shù))的實(shí)數(shù)x至多只有一個(gè)。
(1)解:f(x)在(-∞,+∞)上是增函數(shù),證明如下:
設(shè)x1<x2,即x1-x2<0,
∴f(x1)-f(x2)=(x13+x1)-(x23+x2)=(x13-x23)+(x1-x2)
=(x1-x2)(x12+x1x2+x22+1)=(x1-x2)[(x1+)2+x22+1]<0,
∴f(x1)-f(x2)<0,即f(x1)<f(x2),
因此f(x)=x3+x在R上是增函數(shù)。
(2)證明:假設(shè)x1<x2且f(x1)=f(x2)=a,由f(x)在R上遞增,
∴f(x1)<f(x2),與f(x1)=f(x2)矛盾,
∴原命題正確。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x3+
3x
,求函數(shù)f(x)的單調(diào)區(qū)間及其極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x3+
1
2
mx2-2m2x-4
(m為常數(shù),且m>0)有極大值-
5
2
,
(Ⅰ)求m的值;
(Ⅱ)求曲線y=f(x)的斜率為2的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x3+ax2+bx+c在x=1與x=-
23
時(shí)都取得極值.
(Ⅰ)求a,b的值;
(Ⅱ)若x∈[-1,2],都有f(x)-c2<0成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)求函數(shù)y=
x+3
x2+3
的導(dǎo)數(shù)
(2)已知f(x)=x3+4cosx-sin
π
2
,求f'(x)及f′(
π
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=-x3+ax2-4
 (a∈R)
,f′(x)是f(x)的導(dǎo)函數(shù).
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)a=2時(shí),對(duì)任意的m∈[-1,1],n∈[-1,1],求f(m)+f'(n)的最小值;
(3)若?x0∈(0,+∞),使f(x)>0,求a取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案