下列函數(shù)中,最小正周期為π的是( 。
A、y=tan
x
2
B、y=cos2x
C、y=sin(x-
π
3
D、y=sin4x
考點(diǎn):三角函數(shù)的周期性及其求法
專題:三角函數(shù)的圖像與性質(zhì)
分析:利用周期公式分別求得四個(gè)選項(xiàng)中的函數(shù)的周期.
解答: 解:A項(xiàng)中T=
π
1
2
=2π,
B項(xiàng)中T=
2
=π,
C項(xiàng)中T=
1
=2π,
D項(xiàng)中T=
4
=
π
2
,
故選B.
點(diǎn)評:本題主要考查了三角函數(shù)的周期公式的應(yīng)用.注重了對學(xué)生基礎(chǔ)知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1+i)(2-i)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<
π
2
)的最小正周期為π,且其圖象向左平移
π
12
個(gè)單位后得到的函數(shù)為奇函數(shù),則函數(shù)f(x)的圖象(  )
A、關(guān)于點(diǎn)(
π
6
,0)對稱
B、關(guān)于直線x=
π
3
對稱
C、關(guān)于點(diǎn)(
π
3
,0)對稱
D、關(guān)于直線x=
π
6
對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

因?yàn)橹笖?shù)函數(shù)y=ax(a>0且a≠1)是增函數(shù),而y=(
1
2
x是指數(shù)函數(shù),所以y=(
1
2
x是增函數(shù),以上推理錯誤的是( 。
A、大前提B、小前提
C、推理形式D、以上都錯

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線的漸進(jìn)線為y=±
3
4
x,則此雙曲線的離心率是( 。
A、
5
4
B、
5
4
5
3
C、2
D、
5
2
15
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U={-1,0,1,3},N={0,1,3},則∁UN=( 。
A、{3}B、{0,1}
C、{-1}D、{-1,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖及其尺寸如圖所示,則該幾何體的表面積是( 。
A、30+6
5
B、28+6
5
C、56+12
5
D、60+12
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα>0,cosα>0,則角α的終邊落在( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的兩個(gè)焦點(diǎn)為F1(-c,0),F(xiàn)2(c,0),M是橢圓上的一點(diǎn),且滿足∠F1MF2=
π
3

(1)求橢圓的離心率e的取值范圍;
(2)當(dāng)離心率e取得最小值時(shí),點(diǎn)N(0,3
3
)到橢圓上的點(diǎn)最遠(yuǎn)距離為4
3
,求此時(shí)橢圓C的方程;
(3)設(shè)O為坐標(biāo)原點(diǎn),P是橢圓C上一個(gè)動點(diǎn),試求t=
|PF1-PF2|
|OP|
的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案