精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=cos2
x
2
-sin
x
2
cos
x
2
-
1
2

(Ⅰ)求函數f(x)的最小正周期和值域;
(Ⅱ)若f(α)=
3
2
10
,求sin2α的值.
(Ⅰ)由已知,f(x)=cos2
x
2
-sin
x
2
cos
x
2
-
1
2

=
1
2
(1+cosx)-
1
2
sinx-
1
2

=
2
2
cos(x+
π
4
).
∴函數f(x)的最小正周期為2π,值域為[-
2
2
,
2
2
];…6分
(Ⅱ)由(Ⅰ)知,f(α)=
2
2
cos(α+
π
4
)=
3
2
10
,
∴cos(α+
π
4
)=
3
5

∴sin2α=-cos(
π
2
+2α)=-cos2(α+
π
4

=1-2cos2(α+
π
4
)

=1-
18
25

=
7
25
…12分
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
3
2
sin2x-
1
2
(cos2x-sin2x)-1

(1)求函數f(x)的最小值和最小正周期;
(2)設△ABC的內角A、B、C、的對邊分別為a、b、c,且c=
3
,f(C)=0,若向量
m
=(1, sinA)
與向量
n
=(2,sinB)
共線,求a,b.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•松江區(qū)二模)已知函數f(x)=
1,x>0
0,x=0
-1,x<0
,設F(x)=x2•f(x),則F(x)是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
(
1
2
)x-1,x≤0
ln(x+1),x>0
,若|f(x)|≥ax,則實數a的取值范圍為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
(c-1)2x,(x≥1)
(4-c)x+3,(x<1)
的單調遞增區(qū)間為(-∞,+∞),則實數c的取值范圍是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
x2-ax+5,x<1
1+
1
x
,x≥1
在定義域R上單調,則實數a的取值范圍為( 。

查看答案和解析>>

同步練習冊答案