1.如圖,在直三棱柱ABC-A1B1C1中,底面△ABC是等腰直角三角形,且斜邊$AB=\sqrt{2}$,側(cè)棱AA1=2,點(diǎn)D為AB的中點(diǎn),點(diǎn)E在線段AA1上,AE=λAA1(λ為實(shí)數(shù)).
(1)求證:不論λ取何值時(shí),恒有CD⊥B1E;
(2)當(dāng)$λ=\frac{1}{3}$時(shí),記四面體C1-BEC的體積為V1,四面體D-BEC的體積為V2,求V1:V2

分析 (1)證明CD⊥AB,AA1⊥CD,然后證明CD⊥平面ABB1A1,推出CD⊥B1E.
(2)利用等體積法,轉(zhuǎn)化求解即可.

解答 (1)證明:∵△ABC是等腰直角三角形,點(diǎn)D為AB的中點(diǎn),
∴CD⊥AB.…(2分)
∵AA1⊥平面ABC,CD?平面ABC,∴AA1⊥CD.…(4分)
又∵AA1?平面ABB1A1,AB?平面ABB1A1,AA1∩AB=A,∴CD⊥平面ABB1A1.…(5分)
又∵B1E?平面ABB1A1,∴CD⊥B1E.…(6分)
(2)∵△ABC是等腰直角三角形,且斜邊$AB=\sqrt{2}$,∴AC=BC=1.${V_1}={V_{{C_1}-CBE}}={V_{E-{C_1}BC}}=\frac{1}{3}AC•{S_{△{C_1}BC}}=\frac{1}{3}×\frac{1}{2}×1×1×2=\frac{1}{3}$,…(8分)${V_2}={V_{D-BEC}}={V_{E-CDB}}=\frac{1}{3}AE•{S_{△DBC}}=\frac{1}{3}×\frac{1}{2}×\frac{1}{2}×1×1×\frac{2}{3}=\frac{1}{18}$,…(11分)
所以V1:V2=6…(12分)

點(diǎn)評(píng) 本題考查直線與平面垂直的判定定理以及的應(yīng)用,幾何體的體積的求法,考查空間想象能力以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)命題p:函數(shù)f(x)=lg(ax2-x+$\frac{1}{16}$a)的定義域?yàn)镽;命題q:不等式$\sqrt{2x+1}$<1+ax對(duì)一切正實(shí)數(shù)均成立,如果命題“p或q”為真命題,命題“p且q”為假命題,則實(shí)數(shù)a的取值范圍是[1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}共有3n(n∈N*)項(xiàng),記f(n)=a1+a2+…+a3n,對(duì)任意的k∈N*,1≤k≤3n,都有ak∈{0,1},且對(duì)于給定的正整數(shù)p(p≥2),f(n)是p的整數(shù)倍,把滿足上述條件的數(shù)列{an}的個(gè)數(shù)記為Tn
(1)當(dāng)p=2時(shí),求T2的值;
(2)當(dāng)p=3時(shí),求證:Tn=$\frac{1}{3}$[8n+2(-1)n].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)y=x2-2x-3在區(qū)間[-1,4]的最值為( 。
A.最小值為-5,最大值為-4B.最小值為0,最大值為4
C.最小值為-4,最大值為5D.最小值為0,最大值為5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若實(shí)數(shù)a、b、c>0,且${a^2}+ab+bc+ca=6-2\sqrt{5}$,則2a+b+c的最小值為(  )
A.$\sqrt{5}-1$B.$\sqrt{5}+1$C.$2\sqrt{5}+2$D.$2\sqrt{5}-2$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知等比數(shù)列{an}中,an+1>an,且滿足:a2+a4=20,a3=8.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=anlog${\;}_{{\frac{1}{2}}_{\;}}$an,數(shù)列{bn}的前n項(xiàng)和為Sn,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知$x∈(-\frac{π}{2},0),tanx=-2$,則sin(x+π)=( 。
A.$\frac{{\sqrt{5}}}{5}$B.$-\frac{{\sqrt{5}}}{5}$C.$-\frac{{2\sqrt{5}}}{5}$D.$\frac{{2\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,水平放置的三棱柱的側(cè)棱長(zhǎng)和底邊長(zhǎng)均為2,且側(cè)棱A1A⊥面ABC,正視圖是邊長(zhǎng)為2的正方形,該三棱柱的左視圖面積為( 。
A.4B.2$\sqrt{3}$C.2$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在矩形ABCD中,AB=3,BC=2.將矩形ABCD繞邊AB旋轉(zhuǎn)一周得到一個(gè)圓柱,點(diǎn)A為圓柱上底面的圓心,△EFG為圓柱下底面的一個(gè)內(nèi)接直角三角形,則三棱錐AEFG體積的最大值是4.

查看答案和解析>>

同步練習(xí)冊(cè)答案