分析 (1)證明CD⊥AB,AA1⊥CD,然后證明CD⊥平面ABB1A1,推出CD⊥B1E.
(2)利用等體積法,轉(zhuǎn)化求解即可.
解答 (1)證明:∵△ABC是等腰直角三角形,點(diǎn)D為AB的中點(diǎn),
∴CD⊥AB.…(2分)
∵AA1⊥平面ABC,CD?平面ABC,∴AA1⊥CD.…(4分)
又∵AA1?平面ABB1A1,AB?平面ABB1A1,AA1∩AB=A,∴CD⊥平面ABB1A1.…(5分)
又∵B1E?平面ABB1A1,∴CD⊥B1E.…(6分)
(2)∵△ABC是等腰直角三角形,且斜邊$AB=\sqrt{2}$,∴AC=BC=1.${V_1}={V_{{C_1}-CBE}}={V_{E-{C_1}BC}}=\frac{1}{3}AC•{S_{△{C_1}BC}}=\frac{1}{3}×\frac{1}{2}×1×1×2=\frac{1}{3}$,…(8分)${V_2}={V_{D-BEC}}={V_{E-CDB}}=\frac{1}{3}AE•{S_{△DBC}}=\frac{1}{3}×\frac{1}{2}×\frac{1}{2}×1×1×\frac{2}{3}=\frac{1}{18}$,…(11分)
所以V1:V2=6…(12分)
點(diǎn)評(píng) 本題考查直線與平面垂直的判定定理以及的應(yīng)用,幾何體的體積的求法,考查空間想象能力以及計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 最小值為-5,最大值為-4 | B. | 最小值為0,最大值為4 | ||
C. | 最小值為-4,最大值為5 | D. | 最小值為0,最大值為5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{5}-1$ | B. | $\sqrt{5}+1$ | C. | $2\sqrt{5}+2$ | D. | $2\sqrt{5}-2$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{5}}}{5}$ | B. | $-\frac{{\sqrt{5}}}{5}$ | C. | $-\frac{{2\sqrt{5}}}{5}$ | D. | $\frac{{2\sqrt{5}}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 2$\sqrt{3}$ | C. | 2$\sqrt{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com